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SUMMARY Hydrodynamic stability of fully developed turbulent channel flow has been examined employing a nonhomo-
geneous Orr - Sommerfeld equation incorporating a Reynolds number dependent velocity profile. Applied disturbance
is characterized by high wave numbers. A sufficient condition obtained for the flow to be stable shows that ths
flow isstable when the non-dimensional wave number exceeds a value of 0.7.

1. INTRCDUCTION

Study of stability of fully developed turbulent flow
as a first step can be expected to provide some insi-
ght into the complex phencmenon of reverse transition.
Malius (1956) predicted the fully developed turbulent
mean velocity profile in a channel through suitable
postulates and constraints. Reynolds and T iderman
(1967) evaluated the ideas of Malkus (1956) by obtain-
ing neutral stability curve following along the lines
of classical hydrodynamic stability theory for laminar
flow and concluded that the success of Malkus'(1956)
theory to be fortuitus. Betchov and Criminale (1964)
studied the stability of turbulent boundary layer over
a flat plate employing a non-homogeneous Orr-Sommer-
feld equation concluded that the instability does not
oceur when the non-dimensional wave number is in the
range 0.6 to 2.5. Landahl (1967) while evaluating the
wave propagation constamts for the disturbance caused
by turbulence break down, considered the terms due to
variation in Reynolds stress (in non-hcmogeneous Orr-
Scmmerfeld equation) to be having in a sense a desta-
bilizing effect. Kutateladge (1971) has shown that
the terms due to variation in Reynolds stresses are
not important in the sublayer as well as in the loga-
rithmic region. Thus there exlists considerable contro-
versy as to the role of heynolds stresses on stability
of turbulent flow.

Present work attempts to. clarify the role of Keynolds
stresses on the stability of fully developed turbulent
channel flow, in particular when considered in relation
to higher order effects in the mean velocity profile as
described by Afzal and Yajnik (1973). 4Analysis is ca-
rried out employing the method of matched asymptotic
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expansions. Features incorporated relevant to turbu-
lent flow are, dependence of velocity profile on
Reynolds number, largeness of wave numbers and varia-
tion of Reynolds stresses which leads to a non-homoge-
nedus Orr-Scmmerfeld equation.

2. MATHEMATICAL ANALYSIS
2.1 Governing Equations

Physical model and the coordinate system are shown in
Fig.l. When a two dimensional disturbance is applied
to a turbulent fully developed channel flow and recog-
nizing that now the flow field will consist of a mean
part, a fluctuating part and a disturbance, the gover-
ning equation for the stream function of the applied
disturbance can be obtained in the form as given by
Phillips (1967) as,

" 2 "
(U=-C)(@ =« g -0 @) =
= (4 q’R}(B""- 2:.(2{3" . €‘i4 g )

' ! " 2

- (Txx Tyy) - (*i./cn’)(’[‘xy + Txy) (1)
In egn(l) U(y) is the turbulent mean velocity,

c(= C.+ iC;) is the wave velocity, in gemeral com-
plex. ©( is the wave number and R is the Heynolds
number based on the centre line velocity and half
channel width. @(y) dis the function defining the
disturbance stream function ~V(x, y, t) = #(7) exp
fi¢(x - ct)] . =x,y are the coordinate along and
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Fig.l Physical Model and Coordinate System
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perpendicular to the direction of the flow. Primes
cenote ordinary differentiation with respect to y. Lt
terms represent the variation in Reynolds stress de-
fined, for example, as follows. If uy, vy are the

disturbance velocity components and u', v' are the
turbulence velocity fluctuations, the shear stresses
are,

’rnl = uwv, and Tw = u'v' . (2)
Then variation in Reynolds stress is,
'I‘Lx'y = Tﬂ "Tvl H (3)
and
1(x - ct) -
T = T e . L,
' J:y(r}

Boundary conditions on the disturbance velocity compo-

nent walls (y == 1) imply,
g =0=¢ a y= 1 (5)
Tey = 0= Ty, = Tﬂ='r;y =1
at y= 1. (6)

Egn.(1) together with the boundary conditions egns.(5)
and (6) govern the applied disturbance.
2,2 Turbulent Velocity Profile

From Afzal and Yajnik (1973) a uniformly valid expan-
sion for the mean velocity U can bs written as,

o= o, L1 40 +u () +8{0, +u,(m)}

+0(8) - {2 1+ ¢y *5("2@"{{%{’ )

+ o(8)}] . )

In egu. (7) U, dis the friction velocity, K the
von Karman constant and T is the inner stretched
coordinate defined by M = (1 Fy)/8 where

8 = (1/u, R). Functions Up, Uy, u; and u, are
defined in Afzal and Yajnik (19734.

é.3 Analysis at High Reynolds Numbers

Wave numbers of interest in the case of turbulent flow
can be infered to be large from the results of Betchov
and Criminale (1964) and Reynolds and Tiderman (1967).
In the present study, the wave nunber o€ , is assumed
to ba of ormisr [Ty R)s To study the stability at
high Reynolds numbers by the method of matched asym-
ptotic expansions, an outer limit and an inner limit
are considered.

2.3.1 Outer limit

Cuter limit is defined as R=® o for fixed 7 ;
same as Rayleigh limit in the classical stability
analysis. Outer limit is valid in the region away
from the wall. Following outer expansions along with
egn. (7) for U are called for.

posm = 8, 7w+ n® 8 @ e @

T B = [T + e )(R) Tyw) + - 1(9)
E, e are gauge functions. With ¢ = AU R , when A
is a constant of 0(1) and Ej = (U./R), it follows,

¢i°) = 0 and p&c’) =—5A-T‘ﬂl (10)

E- is chosen to be (U, R) in order that @ in the
o&ter layer is non-trivial and is bounded. Since
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expected for P (y; R). Letting P (v; B) = exp(xg),
where g = g +°c(l} and substituting in egn.(1)
gives,

8o = 2 y+B, (1)
and hence [ _‘]
of( = ) (1)

Ply; &) = e L (12)

Since @ has to vanish to first order as i—=®
the solution to be considered is with the negative

sign.
2.3.2 Inner limit

Following inner variables have been introduced to
consider the inner limit defined as R-*<® , for
fixed £ . § = (l-y)/a, ﬁi = P/, ugy =U/U
c=U(y ,E)/U* and Ty = T/U,. v, denotes the
1ocat.ioncof the critical layer. Employing the inner
variables in egn.(l) and after straight forward alge-
bra leads to the following considerations. If (&/8)
is of order unity, all the terms of homogeneous Orr-
Scomerfeld equation are of unity and the non-homogene-
ous Orr-Sommerfeld equation can be written as,

" " " L
(“; - Gy - Azﬁi) /R gy + (1/&;@.-21\2;514'3 #y)
=(1/me) L(T -1, ) /AT AT 0] . ()

Egn.(13) clearly brings out the role of keynolds
stresses. If the disturbance is of order unity, then
T is of order unity and all the terms due to Reynolds
stresses are of order (1/h). However, there can be a
case when T is of order (1/R). In such a situation
the Reynolds stress terms are of egual importance to
lowest order. In the analysis to follow, the former
case will be studied. Considering the following inner

equations,

Py(n;e) =@ (M1+EF (M U 88,(N) + += (14)
uw, (M 3R) = u (N )+au2(’l)+ o(8) (15)
oM ; &) = ul(nc)+su2(‘nc)+ o(&) (16)
Ti("[; B) =T,.(M)+o(1) . 7)

and substituting in egn. (13), equations for various
orgers are as follwing.

2 L 3 ¢
ﬂ:." (24" + 1,1(“1_“;)3 ﬂ: +[A +1iA (v.l - ul)

25 13,1;_] ﬁo = 0. (18)

- L 3
!ﬁl -[2a 2+ :I.A(ul_,ic):: ¢; + [A+aA (ul_ ui)...im;]gjl
= c "
-n:.A[..{zA (u, - z}ﬂ\e} iﬁo: (v, - ;) ¢°] (19)
g, - [2a +1A(ul-u§J] ¢2 + [4 +1A3(u1..u§) +iau ] ¢2

p X
_ ' 1 " 5
= 1A [Tml =% {Tm1+ A Tmlu (20)
¢
u§ and u2 are the values of uy and u, at N =T[c

the critical layer location. The boundary conditions
at the upper wall transform to, )

g = ¢;=°s py=$ =0 atl= 0 (21)

2.3.2 Asymptotic soluticns of the inner equations

Asymptotic solutions for egn.(18) for large values of
7 can be readily obtained by considering @, to be



of the forms @~ exp(mn) and f~exp( fedn ).
Each of these forms gives two solutions and the four
fundamental solutions to egn.(18) for large 7] are,

Poy~explan), B, exp(-AN) (22)
P exp(-2N/Ta), £, = ep(An/Ia) (23)

where
A = JIaK (24)

Though egn.(19) is non-homogenecus, the solution to
will be exactly of the same form as given by

eqns.(Q2) and (23) for large values of1), since
r.h.s of egqn.(19) vanishes faster.

2.3.L Philosophy of eigen value determination

Matching of inner and outer solutions leads to the
consideration of £ and p only for the general

solution to @ . Hamogeneous goundary conditions
require the vanishing of coefficient determinant
which can be formally written as,

r('qc, &) =0, (25)

Thus the zeroth order solution relates A(i.e., the
wave number for a given U, R) and M (the location
of the critical layer, i.e., essentiafly C for a
marginally stable disturbance). Fig.2 shws the
variation of ¢ With A(=el§ ), obtained by numerical
intrigation of eqn.(18).

To introduce Reynolds number dependence, higher order
effects as incorporated in eyn.(19) are to be consi-
dered. Numerical results for this part of the inves-
tigation will be reported later.

3. SUFFICIENT CONDITION FOR A STABLE FLOW

% , the velocity at the critical

By incorporating
+ 1u® ) in

layer to be in general complex (= u®
r

egn. (18), and examining the sign of u;i

. mine the stability of the flow. The flow is stable

will deter-
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ir uL( Q. Consider the first order inner equation,
¢
eqn.(18) with ul = and its adjoint egua-

tion as given below.

o2k + aacuy - uD] gy +L80 ¢ 1800 D)

¢
+ iuh

+14 u; 18, (26)
L
ﬂ: 2 [2A2-1A(u1— &1 ﬂ:u"' (a -iAB(ul-u;')-iAu"'lJ-
g =0 | (27)

' =]

Quantities with a # denote the complex conjugates.
Multiplying eqn.(26) by , and eqn. (27) by 3
integrating between O toa , on adding the reaulting
equations gives,

2L +2A212+A 1] 1A(Q - q)-zmuu-mzl e

In egn. (28), - (2
e-a"= fulegl g -4 plmq, (29)
r = 1'1951 j'lm a1 (30)
Ij = ! 1612 (31)

Making use of Schwavtz's inequality,
o
*
13-Q1 ¢ 2 ‘!:lull 12118 dn €a 1,1,

(32)
(33)

<

-~

where q Max | ul

U
Using eqn. (32), eqn. (28) can be written as,

-(1 TS

1
(3&)
c

To find out when u11<° (i.e., the flow is always

stable), if L and M are any two arbitrary real
constants, it can be readily shown that,

% .2 . Gen
BT+ AT) ¢ aqI T

' ", o, *1 i =
I(‘ﬁo +Lg + Mp )P+ 1p + M B, Jaq > O (35)
which implies,
2
u2 I: “ (Lz- 2M) Ii + 1 70. (36)
Hence rruu eqn. (Bb),

22
HAu (T +A. 1 )<qu1 I Il(zw-L+2M)

(37)

) c
If r.h.o of egn. (37) is negative, Wy <0 and
r.h.s of eqn. (37) will be negative, if

b2
-IO(A M -1).

2l g g
M2 g a2 a e o5 2wt R o 1. (38)
when
2M2 2 L 2
(2A"M" - L%y 2M)20 and (A M-1)2»0 (39)

or when both (242 M2 I+ oM) and (A% M2 . 1)
are negative. Eqn. (38) can be written in a conve-
nient form as

-] L 2

1<n(2a® - 1%+ 2M)(al' W 1)/ M A (40)

It may be noted that in writing eqn. (40)g=max [ uil



is replaced by unity, since for the present problem
'
Max \ull is unity at Y = 0.

To proceed further, the guantity on r.h.s. of egn.(&0)
is evaluated for different values of A, fixing L
and M. For a given value of L, M, the minimum
value of A at which the r.h.s. of egn.(40) is grea-
ter than unity, gives that, if the value of A 1is
greater than this minimum value, the flow is stable.
The same procedure is repeated for different values
of L and M. A plot of (L, M) wversus A, satisfying
eqn. (40) is shown in Fig.3. Fig.3 shows an extre-
mum behaviour and the minimum values.of A 1s 0.7.
Thus the stability is ensured if A (=o{ §, the
non-dimensional wave number) is greater than 0.7.

. b« DISCUSSION

Examination of stability of fully developed turbulent
flow based on non-homogeneous Orr-Sommerfeld equation
brings out that, the non-homogeneity is due to varia-
tion in Keynolds stresses arising due to fluctuations
in the velocity field and the applied disturbance.

In order to resolve the controversy as to the role
played by Heynolds stresses, it is essential to con-
sider the higher order effects in the turbulent mean
velocity profile. From this consideration, when the
applied disturbance is of the order of unity, the
Reynolds stresses do not contribute to first two
orders. In the second order, non-homogeneity arises,
but due to higher order effects in the velocity pro-
file. However, if the applied disturbance is of order
R, HZeynolds stresses are important to the lowest order.
For large wave numbers, the inner limit leads to an
equation, which contains all the terms of Orr-Sommer-
feld equation, unlike the laminar stability problem,
where,in the viscous region, the governing equation
{Tollmien eguation) though is of fourth order, does
not contain all the terms of Orr-Sommerfeld eguation.

Sufficient condition derived shows that the turbulent
flow is stable if &« § >0.7. In Fig.? (of&) vs.(L,M)
is shown for descrete values of L,M. Several combina-
tions of L,M have been tried and in no case, a value
of (%8) € 0.7 satisfying eqn. (40) could be found.
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