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SUMMARY

We study the thin-jet model of the jet flap which has been used widely in the analysis of both steady

and unsteady jet flap behaviour. Evidence is presented based on linear stability analysis and on nonlinear numerical
simulations which indicates that the thin-jet model is ill-conditioned, leading to unconditionally unstable growth
of all length scales in unsteady flow. These results seem to cast some doubt on the suitability of the present

form of the model for aerodynamic applicatioms.
1 INTRODUCTION

A jet flap results if air is ejected from a spanwise
slot at or near the trailing edge of an aerofoil. It
produces 1ift both by the component of thrust in the
1ift direction and by the modification of circulation
around the aerofoil. The steady jet flap, for which
flow parameters are constant, has received considerable
attention because of interest in V/STOL aircraft. It
was analysed on the basis of two-dimensional inviscid
flow, thin aerofoil, and thin-jet theory by Woods (1961)
and Spence (1956).

Interest in unsteady jet flaps appears to have begun
when W.R. Sears suggested the use of jet flaps for
fast-acting lift control (Spence 1965). Potential
applications to helicopter rotors and aircraft vibration
mode stabilisation systems have led to experimental
studies of two-dimensional incompressible flow past
unsteady aerofoil-jet flap configurations (Trenka and
Erickson 1970, Simmons 1976 A,B, Simmons et al 1978).
Attempts to extend steady thin jet flap theory to un-
steady configurations are due to Ericksom (1962) and
Spence (1965), the latter considering three cases;
namely, a fixed flat-plate aerofoil with an oscillating
jet deflection angle at the trailing edge, a flat-
plate aerofoil oscillating in plunge with the jet tang-
ential to the plate at the trailing edge, and a flat-
plate aerofoil oscillating in pitch about its trailing
edge with a tangential jet at the trailing edge. With
an approximation of small jet-momentum flux Spence
found complete solutions, including evaluation of
instantaneous jet shape and 1ift, for the first two
cases. For the third case he evaluated cnly the jet
shape, the lift being later determined by Trenka and
Erickson (1970). Since comparisons of the lift pre-
dictions of the unsteady theory with experiment have
proved unsatisfactory (Simmons, 1976B), a study of the
thin-jet model behaviour was undertaken.

2 THIN-JET THECRY

In the thin-jet theory of the jet flap the fluid motion
is assumed to be incompressible, inviscid two-dimen-
sional and irrotational. The jet flap is modelled by a
thin fluid sheet of thickness order & containing fluid
moving with speed U._. Letting U. + =, §_ - 0 such that
the jet momentum flix MJ = pU GJ remaing finite (p is
the fluid demsity) gives the ghin-jet limit. The jet
becomes effectively a vortex sheet which may support a
local pressure difference given by (Erickson, 1962,
Spence, 1965)

Pz"Plsuk ’ 1)
where k is the instantaneous jet curvature and p, is

i
the pressure on the convex side. Note that (1) %s an
essential part of the thin-jet dynamics and holds in
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unsteady flow.
2.1 Linearized Behaviour of The Thin-Jet

Some insight into the thin-jef model may be obtained
from a linearized analysis. Consider the unsteady
motion of an infinite jet in an unbounded fluid. 1In

X - y co-ordinates the jet shape is y = n(x,t) and
the fluid motion above and below the jet is described
by velocity potentials ¢1, ¢, satisfying V24 = V2¢2- 0.
The boundary conditions on t%e jet, which aré linear

in n and (¢1, ¢2) are

anf3t = a¢1/ay ] (2a)
ag /oy = 39,3y (2b)
Pp =Py = -p(a¢2/3t - 8¢1/3t)_ (2¢)

These are respectively the kinematic and normal
velocity continuity conditions across the jet and the
pressure difference as obtained from the linearized
unsteady Bernoulli equation. We seek normal-mode
solutions representing periodic motion in the x
direction of the form

ot dikx
n = nge e ’ (3a)
¢1 = 3 o eikx e“ky s F 20 (3b)
¢2 = 3 ect eikx eky y<0o , (3e)

where n., a, and a, are complex constants, k = 2m/X
is the wave number with A the x - wavelength and 0 is
an unknown time constant. The physical disturbance
corresponds to the real part of (3).

We now use K = Eznlaxz in (1), substitute into (2c¢)
and satisfy (2) on y = 0 using (3) to evaluate deriv-
atives, giving the dispersion relationship

3
2 M (27
a = EE qu . (4)

Since M > 0, (4) and (3) show that the jet is always
unstable to infinitesimal x-periodic disturbances, and
moreover that the diﬁturbance growth rate increases
without limit as A~3/Z when A + 0. Thus in the
linearized approximation the jet behaviour is similar
to but more pathological than the vortex sheet subject
to a constant velocity difference where o ~ A7%,

X = 0. Note that (4) appears to cast doubt on the
physical validity of the model as used by Spence
(1965) in which the jet returns in the frequency
domain to an undisturbed flat configuration far



dowvnstream of the wing.
.2 Nonlinear Vortex Sheet Model

In view of the success of numerical vortex sheet-models
of unsteady wakes (e.g. Fink and Soh 1978, Faltinsen &
Pettersen, 1982) in which smoothing and rediscretiz-
ation techniques (mimicking viscous smoothing) are
used to control fine-scale instabilities, while pro-
ducing a satisfactory description of the larger scale
motions, we thought it worthwhile to investigate the
vortex-sheet formulation of the thin jet in order to
study its nonlinear behaviour in a simple configura-
tion. We choose the case of the periodic plunging
motion of a wing-jet flap combination, treated as an
 initial value problem so as to avoid difficulties
associated with downstream boundary conditions. 1In
what follows we nondimensionalize with respect to a
length scale c, the wing chord, and time scale c/Uun
where U is the x free-stream speed. At time t we
describe the jet shape by the complex functionz(e,t) =
x(e,t) + iy(e,t) and cumulative circulation l(e,t) =
¢2 - ¢. where e is a Lagrangian label marking a
material particle on the jet flap-vortex sheet. The
velocity of this particle is the mean of the instan-
taneous fluid velocities on either side of the flap.
Thus

u, - i, = Dz/Dt = dW/dz , (5)

where """ denotes the complex conjugate and W is the
complex velocity potential. The Lagrangian derivative
following z(e,t) and unsteady Bernoulli equation at a
field point Z are respectively

(D/pt) = a/fet + upB/Bx + vpa/ay . (6)
plo + %IdW/dzlz + 34/3t = const 5 N

Applying (6) to I(e,t), using (7) to evaluate
8(g, = ¢ )/3t in terms of p, - p; and (1) to eliminate
Py = Py }eads to

Im[3Z/3e azzlaezl

oo . e
|13z/3e]

Dt J

. (8)

In (8) C. = M(%przc) and the right hand side is Cj
times « expressed in terms of z, Im being the imagin-
ary part of a complex argument. Thus the effect of
the momentum jet is to generate local circulation
following a particle at a rate proportional to k.

2.3 Oscillating Plunging Wing

Equations (5) and (8) are an initial value problem for
[z,T], once we have specified dW/dZ on z. We consider
the simplest case which will give a non-trivial jet
flap motion; a flat wing of unit chord and zero thick-
ness moving in a periodic plunging motion in a stream
of x-speed U_. At t=-0 the wing is in % 2 x 3 -h.
The jet flap is turned on and immediately occupies
(since U_ = =) = >x > %, The wing remains parallel to
the x-axls and moves for t > 0, following a smooth
initial transient (to avoid a strong starting vortex)
with speed and y-elevation given respectively by

v(t) = w¥ coslut=y) , ¥(t) = Tosinlwe=y) (9)

In (9) w is the angular frequency, ¥ a phase angle
associated with the initial transient and Y, is the
amplitude. The jet emanates from the trailgng edge at
(%, Y(t)) always parallel to the x-axis.

At time t the velocity field on z(e,t) may be obtained
through a conformal transformation of the wing to a
circle of radius % and centred at the origin in the ¢
plane, together with a distribution of vortex singular-
ities on the transformed jet, and its image in the
circle. Thus we may write
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& _dgffau
dz dz | \dg -

r = Ylz=1Y(t) +f(z—iY(t))2 - k] s (11)

where the attached and separated flows are respectively

(j—‘;u - i) (10)

[%%J - W, + WO - U, - WO/, (122
a

0
au 1 dr! dr!
ac L = 2 I {:c -¢ Tz - lllﬁci} o« A2

To(t)

Equations (10-12) may be readily shown to satisfy the
required boundary condition on the wing and at |z|

+ o, In (12b) primed quantities refer to integration
variables on Z(e,t). The total sheetcirculation at
the trailing edge is T,.(t) and T = 0 on the jet far
downstream. The Kutta condition determines Fo(t) from

[[g—‘c"s + {g]a] -0 . (13)

t=
Since vortex sheet numerical discretization is now
standard in the literature (see previous references) we
give only brief details. The jet is divided into
order N segments with end points z,(t) , j =0 ... N
and circulations I',(t), j =0 ... N, and (5), (8) and
(10-12) are discretized into 3N first order ODE's for
these quantities. In (8) k_is Ealculated using 5=
point formulae for 3z/de, 3“z/de” at z; with e identi-
fied with j. To estimate (12b), the ihtegral is first
evaluated at the N segment midpoints assuming a linear
variation of I with ¢ in each (z,,C +1), j = 0,...N-1.
The value at z; is then obtained ésiﬂg linear inter-
polation and %, evaluated using (10-12) and (5).
Simple Euler iﬁtegration with constant At is used to
march forward in time. The Kutta condition 'is imple-
mented at each At, the contribution of the element
adjacent to the trailing edge (in the ¢ plane) being
evaluated using a parabolic distribution of ¢ - Co and
I' = I, with arc length s. This leads to a simple
equatgon for T (t). A mew (g,I) in (g;,5) are then
found by parabglic interpolation.

Downstream the calculation is terminated at X = 14.5
in the sense that particles with x > X are eliminated
from the calculation. This strategy can be justified
by noting that it leads to negligible loss of circula-
tion through convection past x = X over simulated time
periods.

3 RESULTS AND DISCUSSION

The three cases reported here were calculated with

N = 180, initial x-spacing of points Ax = .0778 and

At = ,0778. All cases have w = 2 (period = 7) and Y

= 0.2, chosen to give significant nonlinearity. The
initial transient period was t, = 0.589 (y = 0.646).
Values of CJ =0, 0.05 and 0.1 were used.

For C.=0, the flow is the vortex wake generated by a
periodic plunging wing, which was used as a test case.
Like other workers (e.g. Fink & Soh 1978) we found it
necessary to smooth fine scale motion on the vortex-
sheet wake which, owing to local shear instabilitywould
otherwise rapidly amplify and destroy the overall com-
putation. In the present work we used a standard 5-
point smoothing formula (Longuet-Higgins & Cokelet 1976
to smooth both zj and I, co-ordinates at each At. We
accept that this procedﬂre can only be justified heur-
istically as a numerical analogue of viscous action in
real fluids. The calculated wake configuration after
two periods in Figure 1 is similar to the comparable
calculation of Faltinsen and Pettersen (1982). The
familiar mushroom-like wake pattern evolves on the
dominant length scale A = 2n/w = 7 excited by the wscil-
lating wing motion in the presence of the free stream.



t =3.14

t =6.28

Figure 1 Vortex sheet at two non-dimensional times, t,
with C; = 0, w = 2 and ¥, = 0.2. The dashed
lines sbove and below thé flat-plate indicate
the extremes of its plunging oscillation.

t= 1.57

t = 3,14

t =471

Figure 2 Vortex sheet at four non-dimensional times

with CJ =0.05, w=2, and YO = 0.2,

t =1.57

t = 3.14

Figure 3 Vortex sheet at three non-dimensional times
with C;= 0.1, w = 2 and Yo = 0.2.
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The calculated details of the "rolled-up" portionms of
the wake could be improved by use of a vortex-core
amalgamation procedure (Hoeijmakers and Vaatstra 1983).
Note that from (8), DI/Dt = 0 for C. = O. Hence only
particles with finite T obtained thfough separation at
the trailing edge are shown in Figure 1.

.Figures 2 and 3 illustrate graphically the dramatic

effect of the thin momentum jet present in the wake.
Here we show about B80% of the calculated jet-wake.
Note that circulation can be generated locally at all
the z,, j = 1 ..N. At t = 1.57 and 3.14 in Figure 2,
the jlt wake remains fairly coherent although it is
evident that imstability on a spectrum of length scales
is evolving through the combined effect of the momen-
tum jet and local shear on the vortex sheet. By

t = 4,71 and 6.28 disturbances are rapidly amplifying
and the jet-wake flow has become pseudo-turbulent.

The accuracy of the calculation is lost due to the
randomly convoluted jet shape and the vortex sheet un-
realistically crosses over itself. Note that the
smallest amplified lemgth scale on the relatively un-
disturbed downstream portion of the jet-wake is of
order 5-6 vortex points, i.e. just above the smoothing
scale. The behaviour shown in Figure 3 for C. = 0.1
jet is qualitively similar but more "turbulent" due

to the stronger jet.

A case with C_ = -0.1 was also calculated to test that
(8) was giving the correct qualitative behaviour.

This corresponds to an effective surface tension effect
in the jet and, while quite unphysical, it should lead
to stable behaviour. For C. = -0.1, the jet behaved
quite smoothly with no inst3bility or tendemcy to roll-
up over 3 wing oscillation periods.

4 CONCLUSIONS

We considered the thin-jet theory of some interest
since it has been essentially the only jet-flap meodel
studied extensively to date. The present results
however, summarized in equation (4) and in Figures
(2-3) clearly show that the model leads to violently
unstable behaviour in the jet-wake. In view of the
highly turbulent nature of jet flows this is not sur-
prising physically, and perhaps indicates that at

best the jet-flap wake flow is of comparable complex-
ity (and intractability) to say bluff-body wake flows.
In fact there may be a close similarity here in that
classical free-streamline (thin-jet) theory, while
mathematically elegant, has proved of limited value in
the prediction of bluff-body (jet-flap) wake flows due
essentially to initially unrecognized instabilities.
Unfortunately it seems likely that the application of
modern numerical techniques to the thin-jet model of
the jet flap will not easily lead to results of
comparable success to those achieved in recent numerical
simulations of bluff-body wake flows.
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