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An examination of critical points which occur away from
dependence or higher order terms in the series expansion

"no-slip" boundaries shows that the inclusion of time
for velocity can change the whole character of the flow

pattern and this extends right to the origin of the critical point. Without these effects present or included, the

pattern is degenerate. However, degenerate critical points o
inclusion of higher order terms. This study is relevant to t

Introduction

A critical point in a flow field is a point where the
instantaneous streamline slopes are indeterminate and
the velocities are zero. Oswatitsch (1958) and
Lighthill (1963) examined viscous flow close to a
rigid toundary and classified certain cypes of
critical points. Smith (1972) applied the theory of
critical points to the study of conical flows. Perry &
Fairlie (1974) applied it to the study of inviscid
flow with slip at the boundaries and inviscid
rotational flow far frem boundaries. Hunt et al.
(1978) extended tte work of Perry & Fairlie and
introduced the Poincare-Bendixscrn theorem. They made
studies of Flow around obstacles attached to surfaces.
Cantwell et al. (1978) applied it to the geometry of
turbulent spots. Perry, Lim & Chong (1980) and Perry &
Watmuff (1981) used it to explain various
three-dimensional eddying motions. Recently Tobak &
Peake (1982) and Hornung & Perry (1982) have applied
the thecry to complex three-dimensional separation
patterns which cccur on missile shaped bodies at an
angle of attack.

A knowledge cf the classificatior and properties of
all possible critical pcints which are asymptotically
exact local solutions of the Navier-Stokes and
continuity equations gives one a ''topological
language' or vocabulary for describing complex flow
fields in ar intelligible manner.

Free-slip critical points

Let use consider critical peints far from
"no-slip" boundaries and refer to these as "free-slip"
critical points. Close to critical points the velocity
field is expressed as a Taylor series expansion, the
leading terms of which are
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where U = x = iu + jv + kw is the velocity of fluid
particles at the polnt x = ix + jy + kz.
5 2R

The series expansion is substituted into the
incompressible Navier Navier-Stokes and continuity
equations and the coefficients must be interrelated in
such a way so that the expansion is a solution. If the
expansion is a scolution, it must yield an expression
for the precsure distribution. An arbitrary series
expansion will not necessarily do this. A sclution
exists only if the coefficients of the expansion are
related in a certain way. The elements of the matrix F
in equation (1) can te expressed in terms of the local
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n a '"mo-slip' boundary remain degenerate even with the
hree-dimensional separation and eddying motioms.

vorticity and second derivatives of the static
pressure at the critical point.

1f the eigervalues of the matrix F are real then there
will exists three real eigenvectors which define the
three planes (the eigenvector planes). These planes
contain locally a set cf streamlines close to the
critical point. If we denote one of the planes as the

XXy plane then for x, and x> 0
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The parterns in the x x, plane car then be classified
in the same way as phasé-plane portraits in the study
of non-linear dynmamical systems (for details, see
Kaplan, 1958 for example). The classificatiorn is done
with the aid of the p-q chart as shcwn in figure 1
where
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Figure 1. Classification of critical points.

One can see that this figure is divided up into
certain zones, the boundaries OS which are defined by
the p-q axes and the parabela p~ = &4q. There are
regions of saddles, nodes and foci and each of the
three eigenvector planes will have patterns



correcponding to one of the zones given on the p-gq
chart. These then constitute three ''views" of a
pattern and on: can get an insight into the
three-dimensional properties of the pattern. If the

eigenvalues of F are complex, then we will obtain only

one real eigenvectcr. There will then be only one
plane containing streamlines and this pattern will be
¢ focus.

Such patterns classified on the p-q chart abound in
three—-dimensional fluid flow in both steady and
unsteady situations and an example is shown in figure
2. This is an experimentally determined imstantaneous
vector field of periodic eddying motions obtained in a
coflowing wake as seen by an observer moving with the
eddies. The streamlines were actually determined by
integrating the velocity field which was firstly curve
fitted in zones by Taylor series expansions of up to
the 5th order.

(a)
e e Tt T F L g A e A B
‘_,,_:_’.,—,._,,,,—,—‘,J;ﬂ—(-:,- i A --’—r//-—,/v,-':;;

et >
z T I s i
- .p:?//’z.f.z,"zj.rx.fﬂ- T o e e r

N

= DS S ARl o A -t s
»471;/;’//1/101//144:14 Yyl
O | L f ) vt e o 2 s S Fodd
FoV e s i (N

if e o o 2\ Vi

| - [

B - - < A %

- A}

W

(b)

Figure 2. Coflowing negatively buoyant wake
pattern.
(a) Smoke pattern.
(b) Experimentally determined vector
field. (Done with D.K.M. Tan,
University of Melbourne).

There exists a certain class of critical points which
lie on the axes of the p—q chart or on the parabola
p2 = 4q. These are "degenerate'' critical points and a

classification of these patterns are shown in figure 3.

If the vorricity at a critical points is finite, then
using the truncated form given by equation (1), it is
found that streamlines will be contained in a plane
normal to the vorticity vector. The matrixg'x say,
for this plane will be such that we are confihéd
completely to the q axis of the p-q chart as shown in
figure 4.

The flows are always (locally) two-dimensional and if
the eigenvalues of F are real there will exists other
planes whose patterns are described by points on the p
axis as given in figure 3, case 1. Thus all critical
points are degenerate and the patterns in figure 4
range from saddles through pure shear to solid bedy
rotation.
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If the flow is irrotational then the formulation (1)
yields real eigenvalues for F but all eigenvectors are
orthogonal. Thus the patterns for all three
eigenvector planes can lie anywhere shown shaded in
figure 5(a).
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Figure 3. Degenerate or "border-line" cases
on the '"boundaries" of figure 1.
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Figure 4. Degenerate critical points resulting
from linear steady finite
vorticity analysis.

These patterns range from axisymmetric stagnation
point flow to plane stagnation point flow and the
patterns in the xy plane range from the star node (1)
through the general node (2) to the degenerate
"'node-saddle" (3), the locations of which are shown on
the p-q chart.

In all of the cases treated so far, the viscous terms
in the Navier-Stokes equation drop out and so these
cases have been referred to as inviscid critical
points (Perry & Fairlie). Centres corresponds to
pressure minima and all saddle patterns correspond to
pressure maxima.

The stretched vortex problem

An inspection of patterns obtained in practice (like
those in figure 2) show that degenerate critical
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Figure 5. Critical points resulting from
linear irrotational flow analysis.

points are very rare in practice. In particular,
instead of centres we have foci. One is tempted to
model such critical points as a combination of
axisymmetrical stretching as shown in figure 5(b) with
solid body rotation about the z axis as shown in
figure 4. Each pattern is described by the form (1)
and they separately constitute an exact solution of
the Navier-Stokes and continuity equations. However,
in combination, they are not solutions unless we
introduce time dependence. In fact, an exact solution
is

—a —-u 0
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where ¢ is the vorticity aligned with the z axis at
time t = 0, w is the angular velocity of the solid
body rotation component and a is a stretching rate
constant. Since the flow is unsteady, we must think in
terms of instantaneous streamlines and these are
obtained by determining the integral curves for
equation (3) for a fixed "frozen' or instantaneous
value of y. In the xy plane we obtain a non-degenerate
focus.

The question now arises as to whether such a focus is
possible in steady flow. If we model this as a
straight vortex undergoing axisymmetrical stretching
with a constant strain rate, the only way to obtain a
sceady focus is to include viscosity and this means
extending the form (1) to higher order terms. The
solution is

—-a —{O/Z 0 r a xzy + y3
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(6
and ¢ =g, - (¢/2)(alu)(x2 + y2)

where ; 1is the steady vorticicy at the critical point
and the local vorticity varies quadratically with radius
from the z axis. This solution is asymptotically exact
for small radius and represents the case where viscous
diffusion and vortex stretching effects are in

balance. A complete exact similarity solution for this
case is given in Batchelor (1967) where the vorticity
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is a Gaussian function of radius.

Thus a steady focus is possible but elements of
the matrix for the first order terms could not be
determined without accounting for the higher order
terms. This is because gradients in the viscous stress
terms are as important as the inertia and pressure
gradient terms.

Thus it is seen that whenever we obtain a degenerate
solution or "border line" case, this signals the need
to look into the possible effects of either
unsteadiness or higher order terms.

No-slip critical points

Consider flows at a flat rigid boundary where the
no-slip condition applies. Let z be the distance
normal to the boundary. For such flows, the leading
terms in a Taylor series expansion are

u/z Ay Ay A3 X
viz| = By Bz Bal« | ¥ (8)
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or U/z = [.x or X/z = Ex

Note that we must use the variable g/z 50 as to
satisfy the no-slip condition, i.e. U = 0 for z = 0
for all x and y.

Substituting equation (8) into the Navier-Stokes and
continuity equations, the elements of E can be
determined. -

These elements can be expressed in terms of the first
derivative of vorticity and pressure (see Perry &
Fairlie). The author has recently extended the Taylor
series expansion to the third order and found that the
degenerate case of two-dimensional separation is
unaffected by the inclusion of higher order terms. The
pattern (although modified away from the critical
point) remains degenerate and the elements in the
matrix g;in equation (8) are unalcered.

Figure 6. Plot of equation £2).
A degenerate no-slip critical
point with higher order terms included.
(After Hornung, 1983).

A simple example of this third order solution for U/z

A= -Exyz2
v = Boyz + B3z~ + Exzz¥ (9)
w = -(By/2) z2- (E/2)x%2% + (E/2)y%2?
This solution was used by Hornung (1983) in his study
of surface bifurcation lines. Figure 6 shows the
solution he plotted for the case of E = 1.0, B = =2.0
and By = 0. Space does not permit a more general form
of equation (9) to be presented here.



Conclusions and discussion

In the case of free-slip critical points, if the
vorticity is finite, then to the linearized
approximation, it must be uniform in space. In the
absence of vorticity gradients there is no diffusion
and so the viscous terms in the Navier-Stokes equation
drop out and there are no viscous stress gradients.
This is the situation if form (1) is used.

Furthermore, if vorticity is finite and uniform, the
solution is always degenerate and .is confined to the g
axis of the p-q chart. This means that the flow is
two-dimensional. This is a consequence of the fact
that the solution has been assumed to be steady. If
the flow were three-dimensional, we would have vortex
stretching and in the absence of diffusion this would
lead to unsteady flow. However, the instantaneous
streamlines for this unsteady flow are not confined to
degenerate cases and further examples show that
solutions can occur anywhere on the p-q chart.

In the case of irrotational flow, steady solutions are
permitted and are also non-degenerate. However, the
eigenvectors are always real and orthogonal. The
presence of vorticity is manifested by non-orthogonal
vectors or else by the presence of foci.

This now leads us to the very important question of
steady three-dimensional vortical flow. It would seem
that it cannot exists near a critical point but
practical experience shows this to be unlikely. When a
solution is degenerate, it is often a signal that
high order terms should be included in the analysis
and that these higer order terms are somehow going to
affect the lower order terms in such a way as to
remove the degeneracy. However, this it not always
true. For instance, if equation (1) were to be
substituted into the Euler equations and the
continuity equation, any higher order terms would have
no effect on the coefficients of equation (1). This
would imply that such an inviscid analysis would lead
to the pattern shown in figure 7. Far from the region
of vorticity, trajectories are allowed to spiral in
(as would be given by three-dimensional potential
vortex analysis) but these must, according to the
Euler equations asymptote to centres (closed
trajectories) since the critical points must be
locally two-dimensional. This means that the axial
velocity w must have zero gradient with respect to z
as shown in figure 7. This is the only steady critical
point with complex eigenvalues permitted by the Euler
equations. In order to depart from such a pattern
(i.e. to move off the q axis of the p-q chart) and
still have steady flow, we have to include viscous
effects and these enter only if we introduce third
order terms. This changes the whole character of the
patterns including the first order terms and this
leads to the more likely pattern shown in figure 8.

I1f the pattern of figure 7 were to be a steady
solution to the Navier-Stokes and continuity
equations, this would imply that viscous effects enter
the problem only beyond a certain radius. This would
require the lowest order nonlinear terms to be higher
than third order. This could well be possible but
appears to be too special to serve as a generally
applicable solution.

To summarize, steady three-dimensional flow in regions
of finite vorticity cannot exist according to the °
Euler equations, but can exist accordirig to the
Navier-Stokes equation and so viscosity must always
play an important part in steady free-slip vertical
flow theory.

The question now naturally arises with the no-slip
critical points at a surface. Is it necessary to
include higher order terms close to a degenerate
critical point? It can be seen from egquations derived
that the case of simple two-dimensional separation
(which is degenerate) is not affected by the higher
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order terms and close to the critical point, the
pattern remains degenerate.
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Figure 7. Degenerate centre.
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Figure 8. Non-degenerate focus.
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