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SUMMARY

correction method for a new type of slotted-wall wind tunnel.

New linearized theory is presented for pitching moment characteristics of two-element airfoils and for a

Comparisons with exact numerical calculations and with

experimental data show good agreement with predictions of the linearized theory.

1 INTRODUCTION

Despite the universal adoption of numerical surface-
singularity methods, often mated with boundary-layer
calculations, for the prediction of the aerodynamic
properties of low speed airfoils there is still an im—
portant role to be played by amalytic linearized theory.
Because of its relatively simple equations, which lend
themselves to rapid computation on a programmable hand
or desk calculator, and its capability of superposition
of effects, it can be a valuable tool for the aerodynam—
icist. In this paper, two applications of thin airfoil
theory currently under development in the aerodynamics
laboratory at the University of British Columbia are
described. The first is an extension of the theory to
two-element airfoils, either an airfoil with slotted
flap or with leading-edge slat. The second application
is to a residual correction theory for a new form of
low-correction wind tunnel test section for two-dimen-
sional airfoil testing.

2 TWO-ELEMENT AIRFOIL PITCHING MOMENT COMPARISONS

Thin airfoil theory has been successfully extended,by
the authors in Watt and Parkinson, 1983 [WP,1983],to un-
cambered tandem wings as shown in Figure la. Here, the
relative slot length, f-s, is variable between 0 and 1;
the front element, or airfoil, is of relative length s;
the rear element, or flap, of relative length 1-f. The
potential flow about this configuration, for arbitrary
but small values of & and n, is solved for by making the
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classical thin airfoil theory boundary condition linear-
ization [Glauert, 1926]. The solution ignores thickness
effects since thin airfoil theory predicts no effect on
1ifts or pitching moments by thickness for in-line air-
foil elements. The solution is analytical and involves
the readily calculable theta functions (elliptic func-
tions). Expressions for 1ift and pitching moment co-
efficients are obtained using the Blasius equations.
Although some of these expressions reduce to simple
algebraic functions of the initial geometry, s and f,in
general, they are functions of complete and incomplete
elliptic integrals and functions. Nevertheless, using
the efficient theory of the theta functions, overall
1ift and airfoil and flap lift coefficients, overall
moment and airfoil and flap moment coefficients can be
calculated on a TI Programmable 59 hand calculator in
about half a minute. These coefficients are calculated
in terms of their linear variation with & and n, a
characteristic result, in thin airfoil theory, of the
boundary condition linearization. The coefficients can
be shown to reduce to the classical one-element thin
airfoil theory coefficients in the limits as f-s goes
to 0 or 1.

WP [1983] presents lift coefficients and overall moment
coefficients and makes lift comparisons between thin
airfoil theory and numerical potential flow theory. In
this paper, the remaining airfoil and flap moment co-
efficients are presented and the same comparisons are
then made for moment. The convention used is that over-
all 1ift and moment are nondimensionalized by s+1-f
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airfoil 1ift and moment by s and s2

moments about the airfoil leading edge for
and to moment about the flap leading edge for Cmfo.
The airfoil moment coefficient variation with o and n
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and Cpe 1is then easily obtained from Cmo, Cmso‘ and
o
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and are given in WP [1983].

Ef, Gl, and G2 are elliptic functions of s and £

For comparison purposes, it is convenient to use
aerodynamic centers and their associated pitching

moments, where:
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where cy is the pertinent chord length and where:

3 / 3a = 0 (3)
e -
defines Xac/(s+l-f), Xsacfs, and (Xfac-f)/(l-f)-

Thin airfoil theory predictions for the aerodynamic
centers and for the variations of the three aerodynamic
center pitching moment coefficients with n, can be
obtained by applying Equation (3) to Equation (2) and
then using Equations (1) and the other aerodynamic co-
efficient variations with 0 and n presented in WP [1983].
Note that, for Equation (2), thin airfoil theory takes
cosc=1 and predicts zero drag for individual airfoil
elements as well, of course, as for the overall drag.

0f particular interest is the result:
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The numerical potential flow calculations use a vortex
surface-singularity method [Kennedy, 1977] employing the
stream function as fundamental variable. For the pre-
sent calculations its accuracy has been improved upon.
All aerodynamic coefficients are nmow calculated by
applying the Blasius equations for lift and moment to
the complex velocity, obtained by taking the derivative
of the complex potential which is formulated from the
stream function representation and its harmonic con-
jugate. The method provides particularly dramatic
increases in accuracy when calculating airfoil element
drag, probably because it guarantees an overall drag

of zero.

Numerical calculations of the aerodynamic center
functions use Equations (2) and (3). Variations

of coefficients with o and n are approximated by
assuming a straight line variation over a 1° interval,
centered on the & or n of interest. For a proper
comparison of , the thin airfoil theory value for
Xy,  is used in ac Equation (2). NACA 0015 airfoil
eléfients are used and are represented by 80 straight
line segments per element.

Figures 1 and 2 compare thin airfoil theory predictionms
with the numerical theory., Figure 1 shows variation of
the aerodynamic center functions with f-s for a constant
flap chord to total chord ratio of 23%. Numerical cal-
culations are for o¢=n=0°., Thin airfoil theory pre-
dictions are quite good for the overall aerodynamic
center functions and are acceptable for the individual
airfoil element functions. Of course, the latter have
been expanded somewhat by the choice of the nondimen-
sionalizing length.

Figures 2a and 2b also show variations of the aero-
dynamic center functions but with varying ¢ and 0 values
and for a constant slot of 2.5%. TFigures 2c and 2d do
the same for a slot size of 15.4%, an effective mid-
point in slot sizes. In the Figures X; _ 1is Xi__

divided by its numerical value at & =n = 0°. Again,
agreement is very good for the overall functioms,
although less so at high values of a+n (Here the
Equation (2) definition of X; _ loses some meaning,
however, since for large n's Ehere is appreciable
vertical as well as horizontal movement of the aero-
dynamic centers.). Individual airfoil element moments
exhibit less agreement but in proportion to their de-"
creasing magnitudes and, therefore, importance. Except
for Xg,  at large N's, individual airfoil element aero-
dynamic center thin airfoil theory predictions are
within 7% of the numerically calculated values.

3 WIND TUNNEL BOUNDARY CORRECTIONS IN LOW SPEED
AIRFOIL TESTING
3.1 Conventional Practice

In low speed wind tunnel testing the proximity of the
flow boundaries to the test model causes a disturbance
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velocity field which alters the model loadings, increas-
ing them in tunnels with solid walls and reducing them
in open jets. For these conventional tunnels simple
formulas, derived from small-disturbance potential flow
theory, are commonly used to calculate correctioms to
test data for effects of the flow boundaries [Pope and
Harper, 1966]. These corrections are satisfactorily
accurate when the test models are relatively small.
However, in two-dimensional airfoil testing Reymolds

* number simulation typically requires airfoils to be as

large as possible, so that the data corrections may
become unacceptably large in the relatively small wind
tunnels common to university laboratories.

One approach to this problem is to design tumnel test
sections with partly solid, partly open boundaries in
order to take advantage of the above-mentioned opposite
effects of the two boundary types on loadings. A design
of this class has been produced [Williams, 1975] and is
under development in the authors' laboratory.

3.2 The Tolerant Tunnel

Known as the Tolerant Tunmel, this test section config-
uratioh has a solid wall opposite the pressure side of
the test airfoil and a row of airfoil-shaped transverse
slats replacing the wall .opposite the suction side, as
shown in the inset to Figure 3. On this side of the
test airfoil the constrained streamline pattern is
relieved as streamlines pass between the slats into the
plenum upstream and back into the test section down-
gtream. The final flow boundary inside the plenum is
the free shear layer from the upstream test section
corner. The use of a solid wall opposite the pressure
side of the test airfoil avoids the problem of a
corresponding free shear layer inside the test sectiom.

Numerical surface-singularity potential flow modelling
was used to determine a suitable value of open-area
ratio T =g/(ctg) useable over as large a range as
possible of relative test model size Co/H (See Figure 3
for the definition of terms), and it was found that
wall slat configurations with .6<r<.8 should give
low-correction data over a considerable range of test
airfoil profiles, sizes, and angles of attack ®. This
was confirmed experimentally, so that the Tolerant
Tunnel would be a suitable design for a small (H< 1lm)
wind tunnel. In airfoil tests with small Co/H no
corrections to the data would be needed. For larger
Co/H simple formulas, derived by the same methods

used for the corrections in conventional tunnels, could
be used to calculate the small residual correctioms,

as follows.

3.3 Theory for Residual Corrections

The conventional theory assumes two dimensional incom-
pressible irrotational flow and represents a lifting
airfoil by a single vortex at the quarter-churd point,
or by an equivalent distribution of vortices over the
chord. Effects of airfoil thickness are represented
by a distribution of doublets over the chord. Linear-
ization requires retaining only the linear terms in o
and in the disturbance velocities u' and v' in the

x- and y-directions, and up to quadratic terms in
(Co/H). Test section boundary conditions are applied
at y=%H/2, where the origin is taken at the test air-
foil quarter-chord point. On a solid boundary v'=0
and along a jet boundary or free streamline it is
assumed u' =0, corresponding to constant undisturbed
pressure.

In the present version of the theory the test section
is assumed infinitely long and the upper boundary,
after linearization, is assumed to be a free stream-
line with imbedded point vortices representing the
wall slats. Since the boundary condition v'=0 is not
met on the solid elements of the upper boundary, this
model gives correction formulas that become valid as
the slats become vanishingly small (r + 1), but are
increasingly in error as r—+0, the solid wall limit.
The 1lift correction formula is given here as the ratio
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of uncorrected ( )y to corrected or free-air ( )y lift-
curve slope a = dCp/da:

aT Co TI'2 X CO 2
a—F = 1 = M(l-1r) (—é—) +oge (1-5) (?) . (5)

In Equation (5) the first term represents the effect of
the disturbance velocity field created by the wall slats
as they develop lift due to the local angles of attack

arising from the original disturbance velocity field of

the lifting test airfoil. The factor M = rr_1 in 2)

.
4% 2
also represents the effect of the images of the boundary
vortices needed to simultaneously satisfy v'=0 on the
solid wall and u' =0 on the free streamline. The second
term gives the effect of the corresponding images of the
vortex and doublets representing the test airfoil, and

A is the shape factor for the airfoil.

If the linearized upper boundary condition had been
solved exactly, the equation for lift curve slope would
have the form:

a7 Co Co 2
— = 1- F(l—r)f;;) +: G (=) (=)

= = (6)

2 2
where F(0) = F(1) =0; 6(0) = gg(1 —%); and G(1) = Z-(1+1)
to satisfy the known limits for two solid walls
(r = 0) and a solid wall opposite a free
streamline (r=1). Since (l-r) is small for configura-
tions of interest, G(1l-r) can be replaced by the
constant and linear terms of its series expansion,
while F(1-r) requires the linear and quadratic terms.
The final form is:
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3.4 Comparisons with Experiment

In Figures 3 and 4 two comparisons are made of the
predictions of the correction theory (Equation 7)

with experimental data obtained by Williams. In

Figure 3 the ratio a,/ap_, where ap_ is the uncorrected
1ift curve slope in "the“presence of solid walls, is
plotted against r for two fixed values of C_/H.. This
presentation tends to eliminate the effect on the
experimental data of the interaction between the
boundary layers on the test airfoil and the end walls,
which increases with C_/H. The data were obtained for
two different airfoil profiles and two sizes of wall
slat. The theory is seen to give the correct trends and
is in quite good quantitative agreement with the data.

In Figure 4 a /aF is plotted against C /H for several
fixed values u% r. The experimental dafa are for a
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NACAQ015 airfoil at a Reynolds number of lOb, and the
data points for the two higher values of COIH have been
adjusted to compensate for the above-mentioned effect
of end wall boundary layers by raising the solid-wall
data to agree with the solid-wall theoretical curve (an
agreement well established in other laboratories), and
raising the other data points for the same C_/H in

o
proportion. Again the theoretical curves are seen to
be in quite good agreement with the data for the
slatted-wall configurations, particularly for r = 0.7.

4 DISCUSSION

These new applications of linearized airfoil theory are
shown, by the above comparisons with exact numerical
potential flow theory or with experimental data, to
produce sufficiently accurate predictions to make them
useful in engineering practice while providing simple
formulas for calculation or for visualization of rela-
tive effects. Work is continuing to extend the two-
element theory for effects of camber, thickness, and
overlap, and to refine the boundary condition for the
slatted boundary in the tunnel correction theory.
Finally, the authors wish to acknowledge support of the
research by a grant from the Natural Sciences and
Engineering Research Council of Canada.

5 REFERENCES

GLAUERT, H. [1926] The Elements of Aerofoil and Air-
screw Theory. Cambridge.

KENNEDY, J.L. [1977] The Design and Analysis of Air-
foil Sections. Ph.D. Thesis, University of Alberta.

POPE, A. and HARPER, J.J. [1966]
Testing. Wiley, New York.

Low Speed Wind Tunnel

WATT, G.D. and Parkinson, G.V. [1983] On the Applica-
tion of Linearized Theory to Multi-Element Aerofoils.
Part I: Tandem Flat Plate Aerofoils. Aero. Quart., 34,
pp. 46-60.

WILLIAMS, C.D. [1975] A New Slotted-Wall Method for
Producing Low Boundary Corrections in Two-Dimensional
Airfoil Testing. Ph.D. Thesis, University of British
Columbia.



