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SUMMARY The fundamental, and practical, importance of the probability density function of concentration in under-

standing and analysing turbulent diffusion phenomena is now recognized.
this paper was to model theoretically measurements taken in a methane jet.

One motivation of the work described in
Rather than apply one of a variety of

closure hypotheses to the exact evolution equation for the probability density function, a simple and novel approach
was adopted in which exact expressions for some basic flows were used as building blocks to construct the probabil-

ity density function for the jet.
further investigations and applications to be justified.
1 INTRODUCTION

Consider a specified ensemble of turbulent flows in
which some contaminant (e.g. heat or a foreign fluid)
is dispersing. The concentration f'(;s,,l:) ,at position
% and time & , of the contaminant, where the units of
[' are arbitrary, is a random variable. This paper
deals with P(®3 &,E) , the probability density
function (PDF) of L' , defined by the following equat-
ion which holds for all values of ©; and ©y :

P(®,0,3%:k) = pmeb. (6, < Dix,b)< 8,)
G S-G;LP(Q.; ;,b)Je.

Since [ is non-negative, p(@;2¢,k) is identically
zero for @ <O . The advantages of describing and
analysing turbulent diffusion phenomena in terms of
p(&;=,E) rather than, for example, the ensemble
mean concentration C‘.(g,r.,!:) or the ensemble mean squ-
are fluctuation €>(2¢,k) , are the explicit recog-
nition that turbulent diffusion is a stochastic process,
the fact that the conventional analysis is of little
help in many practical problems such as the assessment
of flammability risk for a dispersing gas (Chatwin
1982), and the increased information contained in
p(e: x,k) Thus C(x,E) and T3(x,k) can be
determined from P(Qj :EJI:) by the equations

Cl=,b) =S:°6 p(@;=,E)de,
Tz, b) = S, 8°plo; ) de — C(x,8),

but, conversely, knowledge of(: and =3 is not suf-
ficient to determine F .

(1)

(2}
(3)

Many measurements of o have been made in statistically
steady flows when p = p(9; =) These include the
dispersion of heat in turbulent wakes (Larue and Libby
1974) and turbulent jets (Antonia, Prabhu and Stevenson
1975), and the mixing of methane when a natural gas jet
is injected into air (Birch, Brown, Dodson and Thomas
1978). Hitherto, theoretical investigations (Dopazo
and O'Brien 1976, Janicka, Kolbe and Kollman 1979, Pope
1979) have applied one of a variety of closure hypothe-
ses to the exact evolution equation for P . The reli-
ability of such methods is uncertain at present, and
the present paper summarizes a different method used in
an attempt to model the measurements of Birch, Brown,
Dodson and Thomas (1978). The method is based on some
exact PDFs for some very simple flows, which are then
used, as building blocks, to synthesize the PDFs in the
flow of interest, using basic physical (but rather
speculative) arguments.
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Although the method is speculative, the results are sufficiently encouraging for

2 SOME EXACT PDFs

2.1 The PDF For A Uniform Strain Field
Townsend (1951) showed, in an investigation of the dis-
persion of heat spots in isotropic turbulence, that the
equation’ governing [(2,E) could be solved exactly
when the velocity field is a uniform strain with prin-
cipal rates of strain o, o, ols satisfying (by
continuity) ol 4 olp+olg = O and (without loss of gen-
erality) o, € 2 < 4 . Choosing the directions of
the axes 0=x,,02¢,,0xX3to be those of the principal
rates of strain, Townsend's solution can be written
.
9 ‘Gl 2 1 2
k)= i [ (ﬁ+ﬁ+a)]
IYau ) L'L1L3€n(P 21. 141 S L&L 3

where & is the total quantity of contaminant, and

(4)

1 2
L; = Lo exp(20;k) + g—,’-{’ Cexp (a:E) 1], (5)
L
In (5), Lo is the initial value of Li, , there is no
summation and K, is the molecular diffusivity. Further
exact solutions for this flow are given in Saffman
(1963). Randomness has to be incorporated for (4) to
be relevant in real turbulent flows, but, of course,
randomness is naturally present since the axes with
respect to which (4) holds have directions which vary
from realization to realization of the ensemble. The
form of p(@3%,k) can be written down as an integral
once these directions have been given a probability
distribution in space. There is space here only to
report the results for two simple cases, but many other
examples are treated in detail in Kowe (1982). These
cases both arise when the distribution of axes is iso-
tropic in space. For the first,lp= Ly > Lg in (4),
so that the surfaces of constant [ are flat ellipsoids
of revolution (discuses), and, for the second,
Li=L,<Lgin (4), so that the surfaces of constant r
are thin ellipsoids of reveolution (cigars). In these
circumstances p(8 3 x,E) is independent of the dir-
ection of X , and, for a given value of R={x] , the
maximum and minimum concentrations attainable,
Bmex(R,E) and ©pin (R,E) , are obtained from

(4) as
- 2
Bin=Aexp (- 2%..5 ) Orox = Aexp(- 21R"),

L3

(6)
where
3
g
A=Alk)= Lilals
Defining & and ®,;, by

®= Qlem 5 @.@nz e.,.-,.\{ng

(7)

(8)



the forms of p for the two cases can be written

(20)' [in @, O] 2 @ <O<|
Bmax P = C winl ©] i ' (9D)
e DISCUSES
O, @< O, 0> 1.
(20" [0 Onin U0 (Onin [ ©)] g O € 6< 1,
e = (9cC)
mar p CIGARS

Q; GD<‘C>~6n,€D=-I.
Sketches of P for these two cases are given in Figure
1. Discussion of the physical reasons for the differ-

ent shapes are given by Kowe (1982); see also Chatwin
and Sullivan (1980).
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Figure 1 Sketch of the basic emP curves in (9D)

and (9C) with mup =0.03 The solid curve
is (9D) and the dashed curve is (9C).

2.2 PDFs For Several Dispersing Contaminant Spots
The justification for applying results derived for a
uniform strain field to a real turbulent flow is, of
course, that this is the relative velocity field in the
neighbourhood of any point in a turbulent flow. Many
investigations (e.g. Townsend 1951, Batchelor and Town—
send 1956, Saffman 1963) have shown that the results
derived using this simple field have validity up to a
distance of order five times the viscous cut-off length
from the point in question. The same field was also
used in an investigation of turbulent dispersion by
Chatwin and Sullivan (1979). The philosophy behind the
modelling procedure summarized in the remainder of this
paper is that in the neighbourhood of any point in a
turbulent flow, the instantaneous contaminant field in
each realization can be represented as the superposit=
ion of several spots. The spots have different centres
and contain different total quantities of contaminant,
but (4) will be assumed to describe the distribution
of concentration within each spot, relative to the
centre of that spot and with respect to axes along the
instantaneous directions of the principal rates of
strain at the spot centre.

In applying this philosophy it is necessary to extend
the discussion of §2.1 to allow (a) for the random
spatial location of the spot centre (meandering), and
(b) for the varying total quantities of contaminant
within the different spots. Meandering is catered for
by giving the distance D of the spot centre from the
fixed coordinate origin a PDF §(x) , and the varying
spot intensity by then giving the quantity A, defined
in equation (7) and appearing in equation (4), a PDF
9(4) . The mathematical procedure and many different
cases are discussed in detail by Kowe (1982), but there
is space here only to show the typical results in

Figure 2. These were obtained with the simple, but
natural, choices:

$(x) = @ng?) " rexp (-XY20) (0K x<2),
9(y) =B expi-(y-w)7/20'*} (0€y<AL),
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where o, o’ n' and A, are constants, with@ ex-
pressible in terms of error functions to ensure that 3
is correctly normalized (Kowe 1982). (Note that the
form chosen for § recognizes that A is essentially
positive, and that Ag is the maximum attainable con-
centration.) The results of Figure 2 also include
some additional simplifications which, however, are
introduced only to reduce excessive algebraic and com-—
puting complications which seem unlikely to enhance
the relevance of the results. Thus, it is assumed
throughout that l-g =l.g , and, in calculating the
effect of the meandering, that the X; axis is aligned
with the line joining the origin to the spot centre.
There is some justification for the first of these
simplifications in that calculations by Batchelor and
Townsend (1956) suggest that small spots are more
likely to be flat than long.

There are several interesting features in the graphs
of Figure 2. Here note that for large values of R/l_i
(2g, 2h, 2i), corresponding to PDFs at a relatively
large distance from the origin, and also for large
values of @ /L. (2c, 2f, 2i), corresponding to PDFs when
the spots are able to wander relatively freely, the
PDF is unimodal with a maximum at zero concentration,
corresponding te the fact that, in such cases, the
most likely encountered concentration is zero. For
small values of R/L-; and high values of }L’/Ao (2a,
2b), corresponding to PDFs for relatively small dist-
ances from the origin for several spots of high con-
centration, the PDF is unimodal with the most likely
concentration being non-zero. Finally the PDFs in 24
and 2e are bimodal with conditions intermediate between
those just described. Further discussion of these
graphs is given by Kowe (1982).

3 MODELLING PDFs IN A METHANE JET

The qualitative features in Figure 2 that were identi-
fied in the preceding discussion are observed in many
measurements of PDFs. In particular, bimodal PDFs are
observed (e.g. Antonia, Prabhu and Stevenson 1975,
Birch, Brown, Dodson and Thomas 1978), the shape of the
PDF varies significantly with position ¢, and even
unimodal PDFs are not usually approximately Normal or
log-Normal. PDFs like those shown in Figure 2 were
therefore used in an attempt to match the observations
of Birch, Brown, Dodson and Thomas (1978). These are
shown by the dashed lines in Figure 3, and were taken
in a jet of methane injected into ambient air at a
distance of |0 jet diameters downstream, and at the
various radial positions indicated in Figure 3.

Many methods of modelling these PDFs are possible; that
adopted is based on the suggestion in Kent and Bilger
(1976) that the PDF in a jet is given by

p@;x)s [l -T(x)]pa(0; %)+ T(x)p(@;x),  (11)

where L(X) is the intermittency (defined to be the
probability that the point with pesition vector X is
in the turbulent part of the jet), and pn and | are
themselves PDFs representing contributions from the
non-turbulent and turbulent parts of the jet respect-
ively. Using cylindrical polar coordinates (r; Qb,vL) 5
it is known that the intermittency is self-preserving
and therefore a function only of N = r/>x . Based on
observations by Corrsin and Kistler (1955) in a heated
jet, T(x<) is taken here to be

I)=£[1-erf (23.151-4-.3‘?)] W i, (12)

Many workers using (11) - Kent and Bilger (1976) for
example - have taken Py, to be a delta function. How-
ever experimental evidence in e.g. Venkataramani, Tutu
and Chevray (1975) has shown that Pwn. is broader than
a delta function. Here, somewhat arbitrarily, Py is
taken to be one of the PDFs in the family illustrated
in Figure 2, namely that with R /Ly = 0.1,0/L,=0.4J2
M/IAo=0.25 and o'/As= 0.055% This dis- ~
tribution has the mean and variance 0.0226Ae and
0.002 Ag* respectively. The form chosen for py
is one of the same family, namely that with R/L,=o.f,
ofLy = 0.08JZ, and ,l»"/{h and «/f/Ae chosen so that
p(© 3 %) has the measured mean and variance. This
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Some illustrative plots of P(©; %,E)  for several wandering blobs, obtained (as summarized in the
text) by extending the basic PDF in (9D) to allow for the effects of meandering and variable maximum
concentration using the subsidiary PDFs in (10).
(a), (b), (¢) have R Ly = Q.1, W /As = 0.9, ¢/ /Ao = 0.05Z with:

(a) /Ly = 0.05vZ, (bla/Ly = 0.15{Z, (c) /L = 0. 4VF.
(d), (e), (f) have R/, = 0. 5, m'[Ao=0-68, v/[Ag= 0. 053 with:

(d) U'IL' = 0.05J%, (e)u’/l..| = O-lSﬁ.J (f) q[l_' = 0403,
(g), (n), (i) have R/Ly= 0.8, m'/Ap =2 0.25 ofAe = 0.0553 with:

(8) &/ = 0:058% (h)T/Ly = 0.152 (i)afL, = 0.4v5.

Figure 2

form for Pg is, of course, like that in Figure 2a. The
results of using these choices of Pn and Pg are shown
by the solid curves in Figure 3. The general agreement
is reasonably good, with the model curves reproducing
the observed changes in shape as the location moves
away from the axis. The major difference between the
two sets of curves is that the measured PDFs tend to

be smoother; this may be due to the smoothing effect
of instrumentation as discussed for example in Chatwin
(1982).

a CONCLUSIONS

Further applications of the PDFs introduced in section

2 are possible, including the modelling of the smoothing
effect of instrumentation. Some discussion of these
applications is given in Kowe (1982). However, it has
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to be recognized that the procedure adopted in section
3 contains too many arbitrary choices to be entirely
satisfactory, so that there is need for further work
into physically sensible ways of reducing this arbit-
rariness. Nevertheless, such work seems justified in
view of the reasonable agreement between theory and
experiment shown, for example, in Figure 3, and because
of the absence (at present) of any simple and reliable
alternative.
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