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SUMMARY A numerical model for simlating flows in pipe drainage systems is discussed. The model uses the
implicit weighted four—point iterative non-linear solution technique for solving the gradually varied

unsteady flow equations: these equations are used to similate both open channel and pressurised flows in
arbitary dendritic or looped drainage systems. The use of the implicit solution technique has allowed the

development of a more efficient model which can use muc|

process.
1 INTRODUCTION

Computer simulation is increasingly used to evaluate
possible alternate gsewer/storm drainage augmentation
schemes. Several numerical similation models have
been developed during the last decade but these
models are expensive to use because they use
explicit computational schemes which require the use
of extremely small time increments in the solution
process.

One of the best known urban drainage simulation
models is the Storm Water Management Model; this
model uses two techniques for flow routing through
pipes. The most complex of its routing processes,
using a subroutine EXTRAN, uses an explicit
technique for routing pressurised flows through the
drainage system. Experience with EXTRAN has shown
that to maintain numerical stability for pressurised
flow calculations it is frequently necessary to use
time increments which are.a fraction of a second.
Consequently, the use of this model for long period
gimulations is extremely expensive.

The use of implicit finite difference solution
techniques, allowing larger time increments, is
quite common for simulation of open chanmel flows in
single channels. Few attempts have been made to
extend these methods to simulate flows in channel
networks.

A new simulation model for predicting flows in pipe
networks is presented; this model used one of the
efficient implicit solution techniques to simulate
both open channel and pressurised flows. An
application of the model demonstrates its
versatility.

2. UNSTEADY FLOW EQUATIONS
The gradually varied one dimensional unsteady flow

equations for an arbitary channel, in comservative
form, are
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where A is the cross sectional flow area, g is the
gravitational acceleration comstant, Q is the
discharge, S, is the channel slope, S¢ is the
frictional slope, t is time and x is the distance.

When the channels are prismatic, as generally occurs

h larger time increments than an explicit solution

between manholes in artifical drainage systems,
these equations can be reduced to a simpler form
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Equations (3) and (4) are used as the basis of the
proposed unsteady flow model.

An examination of the unsteady flow equatioms
governing waterhammer transients reveals that they
can also be reduced to the form of Equations (3) and
(4) provided that a modified pipe cross section is
used to evaluate the cross sectional area and free
surface flow width. In addition it must be assumed
that the water is incompressible and the pipe walls
are rigid and inextensible.

The cross section modification, termed the
Preissmann slot technique by Cunge and Wegner
(1964), requires that a narrow slot, open to
atmospheric pressure, be placed above the pipe,
Figure 1, The slot width, B, is adjusted according
to Equation (5)
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where Ag is the cross sectional area of the pipe and
a is the wavespeed of a pressure pulse.
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Figure 1. Modified cross sectional shape

Equations (3) and (4) can then be used to predict
waterhammer transients when A and B in Equation (3)



are replaced by A; and Bg; in addition the flow
Jepth y becomes analogous to the pressure head in
the pipeline.

3. SOLUTION OF UNSTEADY FLOW EQUATIONS

Several implicit finite difference techniques exist
for solving the one dimensional unsteady flow
equations. The available implicit solution
techniques have received extensive discussion in the
literature so a detailed discussion of them will not
be given here, rather they will be briefly reviewed.
There are four common implicit finite difference
techniques: the Strelkoff and Preissmann techniques
require linearisation prior to finding the new flow
conditions at each new time during the solution
whereas the Amein and Abbott schemes do not require
linearisation of the friction and cross sectional
parameters, but the latter two techniques require
iterative solutions. Past mumerical experiments
have revealed that the weighted four point iterative
non-linear scheme proposed by Amein (1968) is the
most accurate and conservative of the implicit
computational schemes. MNumerical experiments with
this solution process reveal that it is most
accurate when the value of the weighting coefficient
is approximately equal to 0.55 for flows in
trapezoidal channels; the accuracy decreases but
numerical stability improves as the weighting
coefficient is increased toward unity.

Applying the Amein solution scheme to solve the
finite difference form of Equations (3) and (4)
requires the evaluation of many partial derivatives;
numerical differentiation is expensive so an order
of magnitude analysis coupled with analytic
differentiation of Equations (3) and (4) permits the
development of an efficient numerical model. The
analytic differentiation and order of magnitude
analysis shows that relatively simple and
numerically efficient expressions can be obtained
for the partial derivatives of the contimuity,
momentum and boundary condition equations. Results
have shown that the proposed model, using the
simplified derivative expressions, has the same
convergence characteristics as a model using
numerical differentiation to obtain the derivatives.
In the complete solution process, at each time
increment, it is necessary to estimate the new flow
conditions then use the estimated flow conditioms to
calculate corrections to the estimated conditions.
The flow condition corrections are found using the
generalised Newton—Raphson process. In the Newton—
Raphson process the estimated flow conditions are
used to evaluate the necessary partial derivatives
and the residuals or errors due to not satisfying
the governing differential equations, then the
partial differentials and residuals are solved to
find the flow corrections. This process is repeated
until the residuals are suitably minimised.

The matrix of partial derivative terms which is
solved to give the flow correctioms, to flow depth
and velocity, to be applied in the iterative
solution of Equations (3) and (4) has a special
structure when doing calculations for single

pipes. For single pipe problems the assembled
matrix is pentadiagonal and can be solved using
efficient banded matrix solution routines. When
solving for flows in pipe networks the matrix looses
its banded structure, due to the junction
compatability conditions, and a sparse matrix
solution scheme is then used to find the flow
corrections. Details of the mathematical model and
the solution process have been given previously by
Joliffe (1982).

4, " APPLICATION TO NETWORK PROBLEM

To demonstrate the application of this numerical
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model we will examine the flow in a network,
previously used by Sewvuk (1973), consisting of 7
pipes which are invert aligned. The pipe layout is
shown in Figure 2. The boundary conditions applied
to this problem are specified inflow hydrographs
entering the pipes labelled C and a free overfall at
the downstream end of pipe A. The continuous water
surface boundary condition is applied at the
interior pipe junctions within the network.

~Free overfall

Figure 2. Pipe layout for hypothetical problem

The details of the pipes, forming the network, are
given in Table 1.

TABLE 1. PIPE PROPERTIES
Pipe Diameter Length Slope Friction
Code (m) (m) factor
A 1.219 610 0.001 0.02
B 0.915 427 0.001 0.02
c 0.763 305 0.001 0.02
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Figure 3. Results at pipe inlets for Sevuk's inflow

hydrographs
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Sevuk assumed that an assymetrical inflow hydrograph
entered each pipe labelﬁed C; the hydrograph had an
initial flow of 0.085 m”/sec, the flow then
increased linearly to 0.4243 m”/sec at a ti?e of 8
minutes, then decreased linearly to 0.085 m /sec at
20 minuses and then the flow remained steady at
0.085 m’/sec.

To perform the simulations a waterhammer wave
celerity of 1100 m/sec was assumed; each pipe was
agsumed to contain 10 computational nodes, a time
increment of 7.5 secs was used and the weighting
coefficient was set equal to 0.75.

The results of the first simulation, identical to
that of Sewuk, are given in Figure 3. The flows
within the pipe network remain free surface during
the entire similation period of 20 minutes. The
results indicate that the flow depths and
discharges, within the network, gradually increase
to a maximum and then decrease at all interior
junction locatioms.

The inflow hydrographs, for the second simlation,
were selected so that surcharging of the pipes would
occur. The inflow hydrographs had the same shape
and duration_as previously but the peak inflow rate
was 0.6365 m”/s.

The results of this simulation, Figure 4, showed a
pronounced surcharge effect. Figure 4 indicates
that the surcharge first occurred at the inlet to
pipes C and propagated downstream through the
network until all pipes except A were completely
pressurised. Also, when pipes B became pressurised
there was a pressure wave transmitted back along
pipes C causing a rapid increase in the pressure
head at the inlet to pipes C. The maximum pressure
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Figure 4. Results at pipe inlets for modified
inflow hydrographs
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at the inlets to pipes B and C occurred when plpes B
and C were completely surcharged and if the
surcharge hadn't been adequately simulated these
peak pressures would have not been observed. The
inflow hydrographs entering pipes B and A also show
the effect of pipe pressurisation; there is a rapid
increase in the flow into pipes B when pipes C
become completely pressurised and there is a rapid
increase in the flow entering pipe A when pipes B
become completely pressurised.

A check of the flows and pressure heads throughout
the pipe network reveal a close agreement between
the results in Figures 3 and 4 and the flows
anticipated by calculating the flow, at a particular

. instant, entering the network as inflow hydrographs

into pipes C. The maximum error 1is 4.,7% of the
discharge at any location and this error is well
within caleulation accuracies which were set to
0.005m for the depth at any node during the
interative improvement of the flow depths.

5. CONCLUSIONS

A mathematical model for simulating flows in urban
drainage systems has been presented. The advantages
of the proposed model, over existing models, are
that it uses an efficient implicit finite difference
solution process and it can reliably simulate both
free surface and pressurised flows in the drainage
gystem. An application of the model demonstrates
how pressure transients, caused by pipes
surcharging, can travel both upstream and downstream
through the pipe network. This particular
application shows the need for reliable simulation
techniques since pressure transients rapidly
propagate through the network and significantly
change the pressures throughout the network.
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