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SUMMARY

A linear theory for the reflection of post-shock acoustic waves off the shock front is described, and

shock wave instability criteria are derived from considerations of the behaviour of the reflection coefficient.
The predictions compare well with observations of shock wave instability in carbon dioxide. However, extensions
to the model seem necessary to give correlation in ionizing argon.

1. INTRODUCTION

In 1954, D'yakov considered the stability of plane
shock waves by adopting an arbitrary equation of state
for the shock medium, and was able to establish
stability criteria in terms of the slopes of the -
Rankine-Hugoniot curve and the Rayleigh line. " However,
Griffith et al. (1976) found that unstable shock waves
occur in a region far removed from that predicted.

They suggested that D'yakov's linear analysis did not
give an accurate representation of real shock tube
flow, and proposed a less restrictive criterion for
shock wave instability. This criterion corresponded
to a condition where perturbations on the shock front
were predicted to neither grow nor decay with time.
This was later shown by Fowles (1981) to correspond to
a criterion derived much earlier by Kontorovich (1957)
for spontaneous emission of sound waves from the shock.
However, the calculations made by Griffiths et al. of
the stability parameters were not sufficiently accurate
to allow definitive comparison with their experimental
results. Furthermore, other authors have suggested
instability criteria different from those proposed by
D'yakov and Griffiths et al. Consequently, we have
developed a more general analysis, that incorporates
earlier work as special cases, and have made improved
calculations of the stability parameters.

2. THE REFLECTION COEFFICIENT AND SHOCK INSTABILITY

We consider the reflection of post-shock acoustic
waves off the shock front, illustrated in figure 1.
The pressure, density, specific volume, velocity and
sound speed of the shock medium are denoted by p, P«

v = 1/p, u and a, respectively. The perturbation of a
quantity n is represented by T, and it is assumed that
T << 1. Unperturbed quantities in the pre-shock and
post-shock regicns for the conventional shock-fixed
reference frame are identified by the subscripts 1 and
2, respectively. In the reference frame of figure 1,
the unperturbed post-shock flow is stationary and
therefore the pre-shock velocity is u; - uj;. The flow
on either side of the shock is assumed to be in ther-
modynamic and chemical equilibrium. The incident and
reflected acoustic disturbances are assumed to be
plane waves of arbitrary shape, and are thus described
by

Pg = E(we[x cos 6/az +y sin 6/a; - t]),
- Py ( ) (1)
ug = e cos8,sinf).

The angle § is the direction of propagation of the wave
with respect to the x axis, w, is the wave frequency.
and f is an arbitrary function. For the incident wave
8=0a, while for the reflected wave §=f. The distor-
tion of the shock wave as a result of interaction with
the acoustic disturbance is given by
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Figure 1. The reflection problem

X = gly - wgt), (2)

where X is the displacement of the shock from the
unperturbed position at x=ust, with wave number kS
and frequency Ws, and g is an arbitrary function. The
consequent perturbation in the x component of the
shock speed is

E; = 3g/3t . £3)

This variation in shock speed must modify the shock
strength and thus produces an entropy perturbation Tg
behind the shock. It is well understood that, while
acoustic waves propagate along the characteristic
paths, entropy disturbances travel along the particle
paths. Consequently, the solution for Te can be found
by neglecting non-linear terms and integrating the mass
and momentum equations aleng a particle path. If ﬁé
is assumed to be an arbitrary plane wave, then this
integration gives

u = h(Lx - k¥)(ke L) .

where Ze and k, are wave numbers and h is an arbitrary
function. The perturbation quantities described by
equations (1) to (4) must satisfy boundary conditions
determined by the Rankine-Hugoniot relations for the
flow variables at the shock wave, i.e. at x=ust.

When non-linear terms are neglected, the full system
of equations can be solved to give the reflection
coefficient,
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Figure 2. The function A*(9)
EB A=-A*(a)
. S A B -A 2
Pd x=uszt
where
2 Q(8) sind - vyv, 13 Q2 () - 2Macosbl
A*(8) = — (6)
vivy Mz 02(8) + 1
Q(8) = sinB/(1-Mpcosb) , (7
and A= j2 dv/dp, (8)

j being the slope of the Rayleigh line, dv/dp that of
the Rankine-Hugoniot curve, and Mp =up/az. The function
A*(0) is illustrated in figure 2. If we restrict our-
selves to positive values of a, then

G<u,<cx.c=cos‘1M2=Bc<B<1T, (9)
since acoustic waves with o >Q. can never overtake the
A*(gl are

shock. Relevant values of
A*(0) = 1 - 2Mp (10)
2 -1
1—M2(1 + vivay™t)
A*(ac) = -—-—2-——-— ' (11)
1-M5 (1 - vive~h)
and
A*(TM) = 1 + 2Mp . (12)

By considering the values of A*(8) and dA*/d® at 8=0,
oc and T for different values of A, it is possible to
develop a gualitative picture of the behaviour of R
with o and A. It is found that R has the form shown in
figure 3 and summarized in table 1. Of particular note
is the fact that R will be infinite when A=A*(B).
From figure 2, it is seen that this is only possible if
A*(0g) < A <€ A¥%(T) (13)
These conditions suggest that it is possible to have
a “"pseudo-reflected" wave in the absence of an inci-
dent disturbance. The existance of such a pseudo-
reflected wave implies that the same equilibrium state
may be achieved by passing the flow through either a
single shock or a stronger obligue shock followed by
an expansion wave propagating at an angle B=B_ to the
x axis. Consequently, one may interpret the case of an
infinite reflection coefficient as corresponding to a
"wave splitting" instability.

From figure 3 and Table 1, we can identify the regions
of shock wave instability considered by previous
authors. The condition A= 1+2M is D'yakov's (1954)
upper limit for shock wave stability. Gardner (1963)
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Figure 3. The reflection coefficient
TABLE 1

Case Range of A Range of R
a -1<A<A*(Clm) -1<R<0
b A= A¥* (Op) -1€R<0, R(oy) =0
c a* (o) <A<A*(0c) -1<R<1
d A=A*(a.) -1<¢R<1, R(,)=%1
e A* (o) <A< A*(0) g RE®
£ A=A%*(0) =1-2Mp -wgRE®, R(0) =0
] A=1 wg¢RE®, R(0) =1
h A=A*(T) =1+2Mp -2 g R€ =1,R(0) =%
i A* (M) <A - RE -1

showed that, when this limit is exceeded, a shock will
break up into a stronger shock travelling in the same
direction and an expansion wave in the opposite direc-
tion. However, our approach is different from D'yakov's
who considered only perturbations originating at the
shock front itself (as in a diffraction problem). In
the present analysis, the region A> 1+ 2M (case i)
corresponds to all incident compression waves being
reflected as expansions with amplification, i.e. R<-1.
Fowles (1976) investigated the problem of a step wave
at normal incidence (a=0) reflecting off the shock
front, and predicted amplification to occur when A > 1.
Later, he (Fowles, 1981) extended his analysis to
include waves of arbitrary incidence (i.e., 0 €0Q.)
and predicted amplification to occur at other angles
when A >A*(0.). From figure 3 and table 1, cases (g)
to (i) with 0.=0 reproduce his earlier results; while
{e) to (i) include his later findings. The region

A* (ac) <Ag1l+2Mp, (cases e to h), includes the surface
0=0g,, R=% ®, which corresponding to the solution
considered by Kontorovich (1957), based on D'yakov's
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Figure 4. The stability parameters

analysis, for the spontaneous emission of sound waves
from the shock. In view of the discussion above, this
surface is now identified as the condition where a
normal shock can split into a stronger oblique shock
and an oblique expansion wave travelling at the angle
Bw to the x axis. Consequently the wave splitting
instability considered by Gardner (1963) is a special
case corresponding to B, = T.

Disturbances at all angles of incidence are attenuated
in cases a to d, for which A'<A*(uc}. It is notable
that for A*(Op) <A <A*(T) (between b and h), a range

of 0 occurs for which disturbances are not changed in
sign on reflection (R>0), that is compressions reflect
as compressions and vice versa. This abnormal behaviour
indicates a fundamental change in the acoustic impedance
of the shock. Furthermore, R exceeds 1 for cases e to

h and consequently these reflected waves are also
amplified. The significance of R>0 and R>1 to the
problem of shock wave instability is under further
investigation. The limit A=-1,M; <1 is D'yakov's

lower bound to the region of shock wave stability. The
region below this limit (i.e. below case a) has been
identified by Fowles (198l1) as that where a single

shock splits into two normal shocks travelling in the
same direction. This type of splitting instability is
frequently observed when materials undergo shock-
induced phase transformations (Duval & Graham, 1977).

3. EXPERIMENT

Griffiths, Sandeman and Hornung (1976) reported two
main types of shock wave distortions for dissociating
carbon dioxide and ionizing argon flows. One type

was shown to result from disturbances which originated
at the contact surface and destroyed the uniformity of
the test sample. The other was shown to occur in the
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presence of a non-turbulent sample, suggesting that

the shock was inherently unstable. In order to confirm
these findings, we have performed further experiments
in argon and carbon dioxide. The experimental arrange-
ment was identical to that described by Griffiths et
al., except that differential interferometry was used
to detect the shock wave, while a new spectral line
absorption method (Houwing & Sandeman, 1983) was used
to detect the contact surface. This method enabled us
to distinguish between cases of shock wave instability
and contact surface instability. The cases of contact
surface instability are discussed in more detail by
Houwing and Sandeman (1983) and are not of direct
importance to the present discussion.

The instability parameters A and A*(0.) were calculated
for a wide range of experimental conditions and some
results are illustrated in figure 4. The thermodynamic
model for carbon dioxide was equivalent to the equili-
brium model described by Simcox and Peterson (1965).
The model for egquilibrium argon took into account
electronic excitation and ionization up to ARIII but
neglected radiation losses and lowering of the
ionization potential. For both gases, intermolecular
forces were ignored. An instability region was
predicted for carbon dioxide but not for argon. This
region was arrived at by determining when A = A* (o) .
It is important to note that in none of the calcula-
tions was A found to exceed A*(0g). It is argued
however that dissipative effects such as boundary

layer entrainment and radiation losses will be
responsible for increasing p, and consequently lower-
ing A*(0;) for the experiments, so that the inequality
may be satisfied. Experimental results for carbon
dioxide, together with the theoretical Rankine-Hugoniot
curves are plotted in figure 5. This shows that
reasonable agreement is achieved within experimental
error for carbon dioxide, although the instability
region is predicted to occur at somewhat higher
velocities. However, this agreement does not extend to
the observations near 3.5 and 12 km/s. Disagreement
also occurs for the argon case (figure 6), for which
unstable shock waves are observed while only stable
shocks are predicted. In order to overcome these
discrepancies, a more sophisticated thermodynamic
model to take into account intermolecular forces and
lowering of the ionization potential is being
considered.

4. DISCUSSION AND CONCLUSION

In solving the reflection problem, it was assumed that
the flow was in thermodynamic and chemical equilibrium.
In reality, however, the relaxation zone is of finite
thickness, and it is therefore necessary to consider
the interaction of acoustic disturbances with the non-
equilibrium region. Extending the analysis to take
into account this interaction may possibly explain
some of the presently unexplained anomalies. For
example, consideration of acoustic reflection off the
electron cascade front in ionizing argon might predict
a condition where such reflections become infinite,
suggesting “"spontaneous distortion of the electron
cascade front". This might well explain the observa-
tions of Glass and Liu (1978). Furthermore, it has been
pointed out that the change in sign of the reflection
coefficient represents a fundamental change in the
acoustic impedance of the shock. The significance of
this change to the problem of shock wave instability
is presently being investigated.
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figure 5, except that vertical lines indicate
contact surface instability.
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