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SUMMARY Experimental observations and mathematical theory suggest the wave nature of shear flow turbulence with
discrete propagating fronts. We report how a physical mechanism of wave gemeratiom by vorticity tramsport helps to
eliminate numerical turbulence in the computational simulation of the development of disturbances into turbulent
spots. The deterministic view of shear flow turbulence as chaotic solution with coalesced wave fronts is thus con-

structively demonstrated.
INTRODUCTION

The intermittent nature of turbulent wake behind a
cylinder was reported by Townsend (1947). The possi-
bility of a double layer structure with a nearly iso-
tropic turbulent core, sweeping and growing in the sur-
rounding laminar flow, was suggested. An individual
growing turbulent spot, hugging onto a solid plate sur-
face while propagating downstream was reported by
Emmons (1951). A double layer structure was also pro-
posed with a "fully turbulent" anisotropic flow in the
spot. Interaction of spots was said to be "passive"
that their overlapped region is not significantly dif-
ferent. With many such spots generated upstream, these
growing spots will soon cover the downstream region as
a fully turbulent flow with its outer edge consisting
of the remnants of the aggregated turbulent spots.
Intermittency and organized structures at various
scales have since been generally observed in both free
and wall turbulence (Hinze 1975, Cantwell 1981). They
are recognized but little understood.

A double layer structure appears simplistic. On the
other hand, a multi-layer structure with a hierarchy
of entities having discrete boundaries propagating in-
to neighbouring states is confusing and disturbing.
Thus it is often more desirable to study some ensemble
average in a set of experiments. The discrete feature
of large structures and global vortical motion will
then stand out. For instance, a diffused horseshoe
vortex appears in a turbulent spot. The aggregation
of many turbulent spots of varied sizes will display
Theodorsen's picture (1955) of a turbulent boundary
layer as some chaotic superposition of horseshoe vor-
tices. More recently Perry et al (1980) proposed to
superpose strings of A vortices to reproduce many mean
features of wall turbulence. Thus turbulence as a
multi-layer structure in terms of a hierarchy of large
and small entities with discrete propagating boundar-
ies appears to display many features of experimental
observations.

Ruelle and Takens (1971) suggested turbulence as rep-
resented by chaotic solutions of bifurcating nonlinear
systems. Fluid turbulence is deterministic as the
chaotic solution of initial boundary value problems of
the Navier-Stokes (N-S) system at sufficiently large
Reynolds numbers. The successive bifurcation fronts
in (x,t) are discrete, finite propagating waves in
physical space %, giving rise to the multi-layer struc-
ture. Thus, the solution of initial value problems of
the N-S system is expected to present major features
of turbulent shear flows. Many computational simula-
tions have generated chaotic fields but failed to show
the discrete features of shear flow turbulence. With
the computed velocity fields not solenoidal they are
not physical, often called numerical turbulence.
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Turbulence has traditionally been considered as a dif-
fusive phenomenon in a convective field, represented
by vorticity transport equatioms, and/or a hierarchy

of transport equations of velocity moments of N-S.

Much effort has been dedicated to the solution of these
transport equations with some closure postulate. Ener-
gy cascading down to dissipation scale eddies is essen-
tial to the statistical theory(ies) and has guided the
ad hoc turbulence modeling, global or subgrid, for the
solution of practical problems. The discrete nature

of turbulence is either overlooked or dismissed as a
purely transitional phenomenon. The failure of compu-
tational simulation is supposed to be due to the lack
of sufficiently refined computational resolution. A
convergent approximation at sufficiently small Ax is
presumed to be free of numerical turbulence.

A chaotic solution is, however, semsitive to data per-
turbation and not well set for convergent approxima-
tion as Ax+0. We can only compute at coarse meshes
for adequate asymptotic approximations to capture the
global features of the turbulent field. Hence numeri-
cal turbulence must be distinguished and removed. The
asymptotic nature of coarse mesh computation and a cri-
terion to identify the best approximation were demon-
strated for the steady state solution of the N-S
(Cheng, 1982). The same should be true for time depen-
dent solutions. The global asymptotic features of the
first few bifurcations should not be adversely affected
by the small scale later bifurcations. The stability
requirement for computing unstable flows is less de-
manding than that of the steady state problem. The
origin of the violent numerical turbulence is likely
not numerical. All these contradict the expectations
of statistical theory. A successful computational
simulation at coarse mesh of the global wave features
of shear flow turbulence will contribute much to the
resolution of these issues. To this end the physical
wave mechanism must first be identified and a method
of avoiding numerical turbulence devised.

A physical mechanism of wave generation by vorticity
transport in a turbulent field was proposed (Cheng,
1983). A velocity disturbance in a flow field must be
accompanied by suitable pressure disturbances. The
first part is to provide the spatial gradient for gen-
erating the velocity disturbance locally according to
Newton's Law. The second part is a harmonic pressure
field to maintain a solenoidal velocity field (and
vorticity). They are the eigen solutions of the
Poisson equations for pressure under nontrivial boun-
dary conditions. The spectral content of_ these eigen
solutions is determined by V§=0 for all x,t. They
may be interpreted dynamically as the impulsive force
pairs required to eliminate the residual divergences
of both physical and computational origin (Lamb, 1932).
These impulses generate waves propagating throughout
the field to alter the velocity and pressure, far and



near, to establish the smooth pressure disturbances as-
sociated with the initial velocity disturbance. A y
smooth, quasi-steady asymptotic state may soon be reach-
ed, consistent with the Biot-Savart Law. Under other
conditions, local coalescence of converging waves lead
to discrete fronts of turbulent quantities, propagat-
ing in (x,t) with different group velocities, and rid-
ing over one another. They represent local solution
bifurcations. A section view will look like the ocean
surface with waves, wavelets and breaks and occasional-
1y local storms or other catastrophic events. When the
eigen solutions of the pressure field and their asso-
ciated velocity field have been calculated, the appro-
priate spectrum of these eigen solutions can be deter-
mined so that the synthesized velocity field is sole-
noidal. This is clearly a tedious and inaccurate com—
putational proposition.

COMPUTATIONAL SOLUTION OF SPOT DEVELOPMENT

We take advantage of the large signal speed to avoid
calculating the eigen states and their spectral con-
tent. The process of wave relaxation to a solenoidal
field is too fast for any viscous action to respond so
that the induced field can be derived from some poten-
tial function. Thus_any non-physical states of vorti-
city T and velocity q_ with residual divergences can_
be restored to the ph§sical solenoldal states w and q
by the addition of Vi and V¢ respectively.

i.e. W=7C+ W (1)
1=q. + @)

with V2y = -div T ' 3
726 = -div q_ )

Then the ggmpu:ation to advance a physical state
q (x,t), w (x,t) and p (x,t) at t=nAt to the next time

step t= (n+l)At will consist of the followiaﬁil

(a) Vorticity loog to obtain a solenoidal w for a

= =1
given solenoidal q , or g as some average convective
velocity.

(b) Velocity loop tg obtain a solenoidal En+1

latest available w .
(e) Quasi—linearizatigg loop to correct the average

for the

=0
convective veloci q

(d) Calculate p (x,t) from Eg$lconve£ﬁ$f, solenoidal
velocity and vorticity fields q and W .

The vorticity transport equation

3w - - 1 2=
Cralle Vx(qxw) + e Vow (5)
with an approximate boundary formulation in terms of
5?5 1?test available data is used to advance W to

£ 7", Equation (3) is then solved with the Neumann
condition 3Y/3v=0 on all boundaries with' normal v so
as to avoid disturbing the nonslip solid 32{5327 condi-
tion: v*w=0. The new solenoidal iterate w' ’ is
then obtained from (1) to repeat the loop w (3)-
This vorticity loop terminates when Hw?g’siiﬁ-m?&’s)|
is less than some predetermined value.

The uncoupled Poisson equation
734 = V= (6)

is solved in preference to the coupled system in==a
with the physiga{nbi?ndary condition of q to obtain the
nonsolenoidal 4, ™% . Equation (4) is then solved
with 3¢/dv= 0_?3 i}l boundaries. The solenoidal velo-
city iterate q 7’ _is then obtained from (2) and the
boundary values of q. corrected before equations (6)
are solved in the next iterative cycle. _Egesxf}ocity
l?g?ngrminates with sufficient small ||q*™ -

q =

The quasi-linearization loop is igigiated by evaluating
the average convectiv§n¥ilocity q from the latest
available iterate of g according to some chosen for-
mat. Repeat the vorticity loop (a) and the velocity
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loop (b) until satisfaﬁigry convergence is obtained.
Finally the pressure p is solved from the Poisson
equation '
du, du
2 s SN
Vo= -[wKwK * ij ij (N

which is obtained from the divergence of the momentum
equations with solenoidal velocity fields at all times
and everywhere. The source terms on the right hand
side of (7) are expressed in terms of rectangular car-
tesian components with summation convention to facili-~
tate computation. The boundary condition for pressure
on the non-slip surface is expressed in terms of the
solenoidal vorticity field as

—g% " S - Elé— (VxiD) *% @)

The iterative processes of determining the ©, q and p
at an advanced time step converge rapidly even with a
simple discretization algorithm.

The induced potential fields ¥ and ¢ in loops (a) and
(b) introduce nontrivial instantaneous vorticity.

Their contributions on a solid surface through nonzero
/3s and 3¢/3s are particularly significant since wave
reflection from a solid surface nearly doubles the
individual contribution. With, r.m.s. vorticity inter-
preted as a turbulence measure, this wave propagation
process 1s a powerful mechanism of turbulence produc-
tion. It is independent of the shear stress in the
mean flow, distinct from the convectional turbulence
production mechanism, and remains in the inviscid
limit.

For illustrative purposes, we carried out the computa-
tional simulation of the development of '"large distur-
bances in a uniform shear flow between a statiomary
plate at y=0 and a moving parallel plate at y=1 with
velocity (1,0,0) at Re=3000. The system of equations
are discretized with the simple forward time and cen-
tered space algorithm using the latest available values
in each syggg. Thﬁ ag&;ige convective velocity is
taken as q =k(q +q ) The discretized Poisson
equations are solved with ADI process with constant
acceleration parameters determined from model studies.
A coarse grid (15 to 30) x15x 15 is used with Ax =84y,
Az = 50y and Ay=1/14. The number of mesh points in

the x-direction is extended to accommodate the down-
stream motion of the turbulent spot where necessary.

No filtering, smoothing or any other computational
artifices have been introduced. All iterative conver-
gence is carried so far that the maximum ngrm of the
changes in q for the last iterate is £10 ~. The com—
puter time required to advance (gq,p) a time step over
the entire field is 2 sec on IBM 3081, i.e. less than
10 sec per point. Computations at more refined
meshes are being planned. Preliminary results from our
coarse mesh computations are reported below.

RESULTS AND DISCUSSION

The development of three types of impulsive distur-
bances has been computed. They are applied uniformly
to the group of mesh points (I,J,K) with I=8, J=2,3
and K=7,8,9 where J=1 (y=0) is the stationary plate
and K=8 the lateral plane of symmetry. The disturbed
field is not solenoidal so that the computation starts
in the midst of loop (b) or (a) to determine the asso-
ciated pressure disturbance potential.

Unit impulses of streamwise component vorticity W
never grow. Uniform shear flow was reestablished at
50 At without any numerical turbulence.

Unit impulses of v-component velocity normal to and
away from the stationary plate generates a horseshoe
vortex, lifting rapidly from y =0 while being stretched
and convected downstream. By 60 At, an apparently lam-
inar shear flow is again established with a decaying and
diffused horseshoe vortex in the middle. There was no
chaotic vortical flows like turbulence in the field.



Unit impulses of u-component velocity generates a com-
plicated three dimensional vortical flow hugging onto
the wall y =0, bounded by a high vorticity front propa-
gating slowly in all directions into the neighbouring
laminar flow. By 50 At, this highly vortical region
assumes the well known shape of a turbulent spot over a
flat plate as was observed in experiments. Within the
vortical region, the flow is chaotic or "turbulenmt".
Outside of the regiom, the flow is orderly but severely
distorted from the undisturbed uniform shear state.

We note the following concerning the developing spot:
(1) The turbulent spot is marked by an irregular high
vorticity front advancing into the neighbouring dis-
torted laminar region. A vorticity plateau is present
in the center of the spot. Figure 1 illustrates the
horizontal sections at y =11 parallel to the plate at
56 At, 66 At and 86 At. The grid points marked by "+"
possess local vorticity magnitudes larger than 3. If
the cut off of the vorticity magnitude is raised (or
lowered), the apparent size of the spot may decrease

(or increase) somewhat with the arrow head shape remains
essentially the same. If horizonti; sections are made
at successively larger distances y , the general shape
of the spot section changes in the manner as was sug-
gested by various experiments.

(ii) The growing "turbulent spot" contains a dominant
but diffused horseshoe vortex anchored at the lower
plate y=0. The whole structure grows in size and
moves downstream at slightly larger than half the mov-
ing plate velocity. Figures 2, 3 and 4 illustrate the
uv=, v-w and u-w velocity components in various sections
at 50 At.

(iii) In the plane of symmetry of the initial distur-
bance and in the midst of the spot, there is a concen-
trated "sheet" of vertical jet stream directed away
from the plate, as is displayed in Figure 3. The jet
stream appears to be the induced velocity of the stream-
wise arms of the horseshoe vortex. There are, however,
other details that cannot be so simply ratiomalized.
(iv) The velocity fluctuation w' in the lateral direc-
tion is generally larger than v' within the spot except
in the plane of symmetry. As is illustrated in Figure

4 the w' suddenly reaches very large values at the
trailing edge of the spot, generating significant trail-
ing "wave packets" that decay gradually further upstream
and outside of the spot. Such wave packets are not
easily explained by the horseshoe vortex but is a natur-
al consequence of the wave mechanism,

(v) The static pressure variation normal to the plate
p(y) in a transverse section across the spot at 56 At

is illustrated in Figure 5. The pressure valley and

the "jet stream” lie in the symmetry plane K=8. The
temporal developments of the pressure p(y) and the mean
velocity u(y) at a station in the symmetry plane from
56 At to 64 At are illustrated in Figure 6. Both the
pressure and the mean flow velocity are significantly
depleted in this region. The pressure valley is the
result of the negative definite source terms in the
Poisson equation (7).

The restoration of laminar flow conditions for the
first two cases provides considerable confidence that
"numerical turbulence” is not a significant component
in our computed results. The calculated spot develop-
ment gives global results in agreement with experimen-
tal observations. The feasibility of asymptotic compu-
tational simulation of the discrete nature of transi-
tion and turbulence is demonstrated.

There are important differences between the two cases
in which laminar conditions are restored. The magni-
tudes of vorticity introduced by unit u or v velocity
impulses are several times as large as the unit vorti-
city impulses w_. The failure of unit w_ impulses to
produce a turbufent spot is likely due to its small
magnitude. We computed also the development of u—
velocity impulses of magnitude 0.1 instead of 1. It
failed to produce a turbulent spot and uniform shear
flow was essentially reestablished at 50 At.

The magnitudes of the vortical loops introduced by unit
impulses of u and v-component velocities are comparable.

A strong horseshoe vortex, which is a dominant flow
feature of a well established turbulent spot was creat-
ed by the v-impulses but it decays when it was lifted
away from the stationary wall. By 60 At, the laminar
flow condition was reestablished. The horseshoe vor-
tex and the turbulent fronts of the associated turbu-
lent region were lifted away from the plate by the

- positive v-component velocity of the imposed distur-

bance. The more distant turbulent fronts are less ef-
ficient in turbulente production at the wall as they
generate weaker or less frequent waves incident on the
wall. Deprived of much wall production of turbulence,
the vortical region decays as viscous dissipation pre-
vails. The local turbulent region, gemerated by unit
u-velocity impulses was permitted to hug onto the wall
so that the wall production mechanism can help to gen-—
erate and sustain the growing turbulent spot. The
relative importance of wave reflection mechanism in
the overall turbulence production is quite evident.

To provide a direct test, we calculated the development
of impulsive disturbances of streamwise vorticity with
- 10 instead of unity. An asymmetric turbulent spot
results., With the imposed u-velocity directed away
from the wall on one side and directed toward the wall
on the other side, the calculated result shows an ex-
tended turbulent region hugging onto the wall on the
down drift side and a smaller turbulent finger on the
other side, lifting slowly away from the plate. The
two regions are connected through a neck in the up-
stream region with a tendency toward eventual breakup.
We are prevented from computing much further to witness
the event because of the interference of the side boun-
daries of our computational domain.

CONCLUDING REMARKS

The wave mechanism of "discrete turbulence" is reviewed
against the experimental and mathematical background.
Vorticity transport generates pressure waves needed to
maintain solenoidal velocity field. The relaxation of
these waves as the solution of the initial value prob-
lems of the N-S can lead to both smooth and discrete
solutions. Smooth solutions correspond to quasi-steady
asymptotic states consistent with the Biot and Savart
Law. The discrete solution contains local turbulent
regions bounded by coalesced wave fronts, propagating
into laminar region. The local turbulent region will
contain other coalesced wave fronts separating differ-
ent turbulent states in some form of a multi-layer
structure.

This wave mechanism suggests a specific discrete formu-
lation for the computational simulation. We calculated
the development of large disturbances in a uniform
shear flow at Re= 3000. Small disturbances die and
laminar flow is restored, Large disturbances generate
propagating turbulent spots with global characteristics
in good agreement with experimental observations. The
computed results support the importance of the wave
mechanism of turbulence production expected to be most
significant in the proximity of a solid wall where in-
cident waves reflect. This production mechanism is
distinct from the conventional one, -uu (BUi/Bx ¥y
through mean flow shear. 3 3
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