7th Australasian Hydraulics and
Fluid Mechanics Conference,
Brisbane, 18-22 August, 1980

Admissibility Requirements and the Least Squares Finite
Element Solution for Potential Flow

G. de VRIES

Adjunct Professor of Mechanical Engineering, The University of Calgary, Canada

D.H. NORRIE
Professor of Mechanical Engineering, The University of Calgary, Canada

SUMMARY It is shown that continuity of the first derivatives of the velocity components is required in the

least squares finite element formulation of potential flow.
The solution procedure is illustrated using both fifth-order and

order higher than commonly supposed.

The admissibility requirements are thus one

first-order trial functions for the components of velocity and the results compared.

1 INTRODUCTION

The starting point for the variational finite ele-
ment method is the requirement that some integral
be minimized. Such an integral is generally ob-
tained using the calculus of variations, but alter-
natively can be obtained from the least square cri-
terion. Where a governing equation can be written
in the usual form

Au = f (AL)

the residual R is defined for an approximate solu-—
tion @ by

R=Af1 - £ (A2)
and the least squares criterion is that f WRZdD
shall be a minimum, where W is a positive weighting
function. If there is more than one governing equa-
tion, it is the sum of their independently-formed
weighted integrals that is minimized (Finlayson and
Scriven, 1965). The finite element method based on
the minimization of such integrals has the advan-
tage of yielding a symmetric and positive definite
system K matrix.

Boundary conditions in least squares formulations
can be handled in a fashion similar to other resi-
dual techniques (Finlayson (1972), Norrie and de
Vries (1973)). Two commonly used procedures are to
require the trial function to satisfy the boundary
conditions or to impose the least squares criterion
on the residuals from the boundary equations. In
the former case, the boundary conditions can be in-
corporated into the element or system matrix equa-
tions as so-called 'equivalent coupled Dirichlet
conditions' (Norrie and de Vries, 1978).

The least squares finite element method has been
used successfully for a variety of linear and non-
linear problems by Hinton and Irons (1968), Akin
(1973), Lynn and Arya (1973,1974), Zienkiewicz et
al. (1974), Lynn (1974), Lee (1974), Rossow (1975),
Blackburn (1976), Steven (1976), Balasubramanian et
al. (1977), Milthorpe and Steven (1978), Tuomala
and Pramila (1979). Potential flow would seem to be
a straightforward application, but as the following
indicates, requires the proper consideration of the
admissibility conditions i.e. the continuity re-
quirements for the trial function.

Early least squares solutions of potential flow
used trial functions with C0 continuity. The re-
sults obtained were generally of low accuracy, in-

deed, less than would be expected. As is shown sub-
sequently, the continuity requirements are, in fact,
more stringent (1) and if satisfied lead to much
improved solutions. This suggests that in other
least squares formulations, the admissibility con-
ditions may deserve more consideration than they

are sometimes given.

2 ANALYSIS

For two-dimensional, incompressible, irrotational
flow, the governing equations can be written
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where u and v are the x and y components of the ve-

locity vector q. Only two boundary conditions will

be considered here. The first is that the velocity

q is prescribed on a portion S, of the boundary of
: 1

D, that is

i-Qons, , &)
where Q is a prescribed function of velocity along
S.. The second boundary condition is that there is
no flow across a fixed rigid boundary, that is

g -n=20on S2 5 (4)

where S; is a solid boundary and 1 is the unit out-
ward normal to S;. TFor the problem to be con-
sidered, Sl and 8o comprise the total boundary S
enclosing the domain D, hence

S= Sl + 52 . (5)

Those functions u(x,y) and v(x,y) which satisfy the
governing field equations, Egs. (1) and (2), subject
to the boundary conditions, Egs. (3) and (4), will
now be sought.

It is shown in Appendix A that among all trial
functions f(x,y) and ¥(x,y) which are admissible,
those functions which minimize the functional

1 oL | 9% 2 o N2
= : ; =
X 2 J[J [(ax By) (B 3 )" 1dxdy , (6)

also satisfy the governing field equations provided
the trial functions 0(x,y) and ¥(x,y) satisfy the
boundary conditions



(7)
(8)

For the trial funetions to be admissible, they must
be continuous, must have continuous first deriva-
tives and piecewise continuous second derivatives
in D (see Appendix A).
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It will now be shown that although there is a dif-
ference between the boundary conditions given in
Eqs. (3) and (7), the solution to Egs. (1), (2),
(3) and (4) is identical to the solution to Egs.
(1), (2), (7) and (8).

Let the solution to Eqs. (1), (2), (3) and (4) be
denoted by

€D

(10)

Since the velocity field a
condition, Eg. (3), it mus
fy

satisfies the boundary
necessarily also satis-

!

+ 0= Q *non S

9 1 (11)

The difference

a5 between the two velocity fields
is given by

q3 ==

a q2

=(u

u

> e u2)1 + (vl - VZ)J = ui + v3j,

(12)

where u,, v, are the X,y components of g Because

q; and 4, satisfy Eqs. (1), (2), (D ang (8), the
new velocity field ds satisfies
du v du v
3 e 3 - (13)
T R T = L
ax dy oD Ay Ix 05 d0:Dis (14)
subject to the boundary conditions
4y * B = 0 on Sl y (15)
by virtue of Eqs. (11), (7), (12) and
9y *n=0ons, , (16)
because of Egqs. (4) and (8). The problem posed in

Egs. (13), (14), (15) and (16) is that of incompres-—
sible, irrotational flow between two rigid walls 51
and S,. On account of the well-known theorem
(Milne-Thomson, 1962), Acyclic irrotational motion
18 impossible in a liquid bounded entirely by fized
rigid walls, it can be concluded that

q

0Zgn. Dy

3 17

and the two solutions 51
In summary, if the trial functions #(x,y) and
¥(x,y) satisfy the boundary conditions, given in
Eqs. (7) and (8), the solution given by the varia-
tional procedure is Zdentical to the solution to
the problem posed originally in Egs. (1), (2), (3)
and (4). The admissibility conditions on the trial
functions are those earlier stated, which, it
should be noted, require continuity of the first
derivatives.

and 4, must be identical.

To try to assess whether satisfying these admissi-
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bility conditions gives an improved accuracy com-
pared with satisfying only continuity of the trial
function itself, the flow around a cylinder was
computed using both linear and fifth-order triangu-
lar elements. For the fifth-order element (Cowper
et al, 1968) the nodal parameters comprised the
function value and its first and second derivatives
at each of the vertex nodes. The (constrained)
fifth-order trial functions # and ¥ were substi-
tuted in (6) and the functional minimized in the
usual way with respect to the nodal parameters.

The boundary conditions were inserted at the ele-
ment level as 'equivalent coupled Dirichlet condi-
tions' (Norrie and de Vries, 1978). TFurther de-
tails may be found in de Vries et al. (1976).

3 RESULTS AND DISCUSSION

For the fifth-order solution, the region around the
cylinder was initially discretized as shown in Fig-
ure 1. The final solution also took advantage of
symmetry and used only one quadrant of the region
shown. Because of the proximity of the outer
boundary to the cylinder, the theoretically correct
boundary conditions for flow around a cylinder in
an otherwise wiform (left to right) stream was im-
posed on this outer boundary. In all cases, the
results obtained were very close to the theoretical
values. Figure 2 shows the values of u and v ob-
tained along the cylinder surface, for the grid of
Figure 1, with the percentage variation from the
theoretical indicated.

The velocity at the cylinder shoulder (point A) is
shown plotted in Figure 3, against the total number
of nodal parameters in the domain, for both the
fifth-order and linear elements. Similar results
were obtained for points elsewhere in the region.
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Figure 1 Discretization of Whole Region
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Figure 2 Profile of u and v Along the Cylindrical
Surface EA



20

FIFTH- ORDER

LINEAR

0.5

VELOCITY AT SHOULDER OF CYLINDER POINT A

I 1 | | |

100 200 300 400 300
MUMBER OF SYSTEM UNKNOWNS

[+]

Figure 3 Comparison of Solutions for First- and
Fifth-Order Polynomials

The improvement in accuracy for the fifth-order ele-
ment with a given number of system nodal parameters,
as indicated in Figure 3 could, of course, be attri-
buted simply to the higher-order element having a
greater 'efficiency' i.e. being better able to fit
the true solution. It is known, however, that use
of a trial function with a lower order of continui-
ty than admissibility would require is generally
equivalent to neglecting interelement integrals in
the analysis, resulting in an increase in solution
error in most cases. This suggests that at least
some of the deviation between the two sets of re-
sults shown in Figure 3, and possibly a major por-
tion, is due to the admissibility violation in the
case of the linear element.

0f course, it is known that (Finlayson and Scriven,
1967) non self adjoint problems are not in gen-
eral amenable to a classieal variational formula-
tion, and in such cases, admissibility requirements
in the strict calculus of variations sense would
not exist. The basic requirement for continuity of
the trial function in a least squares formulation
then stems from the necessity for existence across
the domain of such trial functior derivatives as
oceur in the least squares 'functional'. In the
self-adjoint problem, as the present example has
shown, a higher level of continuity than this may
be imposed by the variational admissibility require-
ments.

As is seen from Figure 3, both solutions converge
as the element size decreases towards zero. It is
by no means unknown for convergence to be obtained
when the admissibility requirements are violated,

as the non-conforming elements demonstrate. Indeed,
sometimes the convergence rate can be significantly
higher under these conditions, although this is the
exception rather than the general rule. Disregard
of admissibility conditions can, in general, be ex-
pected to increase solution error for the reason in-
dicated earlier, but convergence will still be ob-
tained if the interelement errors reduce at an ap-
propriate rate with a decrease in element size.

The results obtained for potential flow suggest
that the admissibility requirements for least
squares formulations may be worth more considera-
tion than sometimes given.
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6 APPENDIX A

For the functional, given by Eq. (6), to be sta-—
tionary, it is required that the first variation of
% vanishes (Forray, 1968). Introducing the notation

ST A AT =l Sgh R (A.1)
== 4+ 2= St o O
5 I 2 gyl Q 9y  ¥x (A.2)
and the identity
) 3 = B%
2 _ (&% =2 = At
P[BX (61)] S (P sa) - sn s (A.3)

allows the variation of Eq. (6) to be written as

¢
8 = - [| [6a
JJD,

)

J

2P

(Bx

50
29) Jaxdy

J [ (Pst - Qsv) + 2— (Psv + Qs0)]dxdy = 0.
o 9x 3y
(A.4)

Gauss's Theorem may be applied to the second term
of Eq. (A.4) provided that both 0(x,y) and ®(x,y)
are continuous in D+S and have piecewise continuous
First derivatives in D (Sternberg and Smith, 1946).
If the trial functions are so restricted, them Eq.
(A.4) may be rewritten as

f 3% Bé 3% aé
(== 81 — 4 + lf— —
&x JJD[ 4 (Bx By) ﬁv(?’y ax)]dxdy

+ J [P6(q » n) + Q66 n_ ~ 89 n )]dS =0 .
5 7. =
(A.5)
Since the domain and surface integrals in Eq. (A.5)

are independent, the necessary conditions for the
functional of Eq. (6) to be stationary become

o 2R 4 20 120 1 ey
JJD[ﬁu G T oy t 8 Gy =50 dxdy = 0,(A:6)

and

J [55(3 - ) + & (tn_ -6%n_)]dS =0 .(A.7)
s ¥ =

Because the variations of f(x,y) and ¥(x,y) are ar—
bitrary and independent within D, it follows from

Eq. (A.6) that both
08, 20 oP._ 3Q (A.8)
L8 -Qginp, & = .
9% Oy B By o B oD (4.9)

where the " has been deleted to indicate that these
functions indeed cause Eq. (6) to be stationary.
Combining Eqs. (A.8) and (A.9), it will be seen
that

v2Q =0in D . (A.10)
Although the variations of fi(x,y) and ¢(x,y) are
arbitrary and independent within D, this is not
the case.on 5. In faet, it can be shown for

the variation of the boundary conditions

& - o= D (A.11)
q n=0Q n on Sl S | n =0 on 32 S (A.12)
that Q=0on S, (A.13)

where again the superscript ~ has been dropped to in-
dicate that Q is obtained from those functions
u(x,y) and v(x,y) which give the functional a sta-
tionary value.

From Egs. (A.10) and (A.13), it can be further
shown with the aid of Gauss's theorem that

QESE0r s Dand Ton s . (A.14)
And furthermore, it can be shown (de Vries et al.,
1976) that P must also be identically equal to zero
throughout D and on S, provided that both P and Q
are continuous and have piecewise continuous first
derivatives in D.

Since Q is required to be continuous in D+S, Eq.
(A.2) shows that 3u/dy and 3v/3x must also be con-
tinuous in D+S. 1In general (excluding the special
case of u(x,y) and v(x,y) with stepped slope dis-
continuities to the y and x axes respectively),
this requires that du/3x and 3v/dy also be conti-
nuous in DHS.

To summarize, those functions u(x,y) and v(x,y)

which cause the functional given in Eq. (6) to be
stationary satisfy
T i . I LRl e (A.15)
o gt Dasuager Sam S Dl Doty 6
as well as the boundary conditions
(A.17)

- n = 6 - non s a *n=0o0nSs

|

12 2 ’(A.18)
and hence constitute the solution to the problem
posed earlier.

The requirements of admissibility are that the
trial functions fi(x,y) and ¥(x,y) belong to that
class of functions which are continuous, have con-
tinuous first derivatives, and have piecewise
continuous second derivatives inm D.
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