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SUMMARY

schemes often arises when channel slope is large and space-step size AX is not properly chosen.

The problem of numerical stability in the simulation of unsteady open channel flow using implicit

This paper

reports results of a theoretical analysis and numerical experiments which show that AX should vary

inversely with channel slope(Sy) when S5 is greater than a critical value.

Within the range of present

study, the relationship can be approximated by AX = 0.3 Y5/(Se - 0.0005) indicating the critical value of

channel slope to be 0.0005.
used for practical application.

e INTRODUCTION

Simulation of unsteady flow in open channels using
numerical techniques to solve governing equations
of motion and continuity has been developing very
rapidly in recent years., HMany investigators have
shown in theory as well as in practice that
implicit schemes, such as Preissmann's, for
discretization of governing equations are uncondi-
tionally stable provided that the weighting factor
for the advanced time-points 1s greater than

0.5 (Abbott and Ionescu, 1967; Cunge 1966).
However, this criterion has failed to hold when
channel slope (Sg) #s large and the grid size(AX)
is not properly chosen (Yen, Wang and Yu, 1977).
By theoretical analysis and numerical experiment,
the present study investigates the influence of

So on the maximum AX under which numerical stabi-
lity can still be maintained.

2 THEORETICAL ANALYSIS

The equations of motion and continuity for open
channel flow are discretized by Preissmann's scheme
(Mahmood and Yevjevich, 1975) to'obtain a set of
finite difference equations. Solutions to these
finite difference equations contain mumerical
errors. If the errors grow continuosly, the
solution will be unstable and eventually destroyed.
To examine the nature of this instability, the
solution, in the form of Fourier series, to the
linearized differential equations of motion and
continuity are substituted into the finite differ-
ence equations to derive the amplification factor
from which the stability criterion is obtained as
follows

i o0 ‘/Wé_ 1 (1)
where
A =1+ 4a(~ 1+1/F9)0% + 4a0i
B =8a%( -1+ 1/F*)8 + 2b + 4a(l + 5b6/3)1}(2)
C = 4a’(~ 1 + 1/F?) + 20 abi/3

and i = ¥-1, a = Uy(At/AX)tan(ahX/2), b = gSoht/Up,
F = Uy/vVg¥o, Up = initial velocity, Yo = initial
depth, At = time~-step size, o = wave number of

Here Y, is the initial flow depth.

It is recommended that AX = 0.3 Y /S, be

Fourier component, and g = gravitational accelera-
tion. From Eqs.(l) and(2) the regions of stability
and instability are determined as a function of a,
b, F and 0. The results are plotted in the form of
a vs. b with F and © as parameters. Figure 1 shows
one of these plots. Each line represents the divi-
sion between stable and unstable regions for the
Froude number indicated. The region above the line

is stable and the one below is unstable. Each of
these lines can be approximated by
SgAt
At GhX. 8%
Uo X tan(=-) = k( [ maks 1) (3)

in which k,, being the slope of the line it
represents, is a function of F and 6., Assuming
that the o value of the wave component that causes
instability has a special relation to AX so that
tan(adX/2)=1/k, is a constant, then Eq.(3), after
multiplying by Yo/Ugy on both sides of the equal sign,
can be rewritten as

Yo rkly g
BX T FE 0 T At £e
1 850 3
If EE<<_§—’ Eq.(4) can be approximated by
o
Yy ;
iz = Kik;So/F (5

It can further be shown that the group of k1k2/F2
is a rather weak function of F(Yen et al, 1979).

The above results are based on the analysis
performed on linearized governing equations.

The linearization assumes that unsteady flow

is a perturbation of small amplitude to steady flow.
The validity of these results when the perturbation
is no longer small as in the case of actual flood
flow should be verified by mumerical experiments.

3 DIMENSTIONAL ANALYSIS

Just as in the case of experiments in hydraulic
laboratory, dimensional analysis must be performed,
before the experiments are run, in order to have a
good grasp of parameters controlling the physical
phenomenon involved so that the investigation can
proceed systematically. For a wide rectangular
channel, the maximum space-step, AX, that will
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Figure 1. Regions of Stability and Instability for Various Froude Numbers( 6= 1)

produce a stable numerical solution can be expres-
sed as follows:

AX = £(So, Yo. 909 Qpi» &» £, 0, T) (6)

in which Sq = channel bottom slope, Yo = initial
denth, qp = initial discharge per unit width,

qpi = peak inflow discharge per unit width, 6 =
weichting factor for the advanced time-points, and
T = equivalent duration defined as:

L. jTqut )
dpi

[e]

T =

where T, = duration of inflow hydrograph, and q =
discharge per unit width at any time t. Eq.(7)
simply transfers the inflow hydrograph into a
rectangular hydrograph having discharge qpi and
duration T.

There are eight independent variables and one
dependent variable in Eq.(7), containing two basic
dimensions. Tnerefore they can be organized into
seven dimensionless parameters as the following:

AX F  dpi Yo At
=B s e R ) (8)
(o] ,’So q.o 24

in which F = qo/nga is the Froude number,
o

4 NUMERICAL EXPERIMENTS

Based on Preissmann's scheme, the numerical solu-
tion was sought by using Gaussian elimination
method. A computer program was constructed for
this purpose. The numerical experiments were
designed in accordance with Eq.(8) so that the
influence of the parameters on numerical stability
can be examined one by onme. In each experiment,

a sine-curve shaped hydrograph was used as
upstream boundary condition and a stage-discharge
rating curve as downstream boundary condition.

The form of the rating curve was arbitrarily chosen
so that its depth at the initial discharge did not
confirm with uniform flow condition in the channel
reach considered. There were three series of
experiments carried out. 1In all three series g is
equal to 1.

In Series I, the variable is gpi/qo. Other condi-

tions are: At = 1 hr, T = 12 hrs, qo = 1l cas/m and
AX = 250 m; The peak inflow discharge qpi was
varied so as to make qpi/qp a variable. All other
parameters are constant. In each run of experiment,
a value of qpi/qo was assigned and So increased in
steps from small to large values until instability
appeared. Then interpolation was employed to locate
the critical value of slope where instability
actually occurred. Five runs of experiments have
been carried out in this series with values of
qpi/qo ranging from 2.43 to 29.57. The results of
this series have shown that the ratio qpi/qo nas no
effects on AX/Yp.

In Series II, except that At = 0.5 hrs, all the
other conditions are the same as those in Series 1.
Also five runs of experiments have been carried
out. Although the value of At/T = 0.0417 in this
series is only one-half of that in Series I, the
results are identical. Therefore, one can say that
the parameter At/T has practically no effects on
AX Y.

In Series IO, two sets of experiments have been
carried out with the conditions as follows:

lst set 2nd set
At (hr) 0.5 2
T(hr) 12 48
qpi (cms/m) 15,29 15.29
qo (cms/m) 1 1

The results for these two sets are listed in Tables
I and II below

TABLE I

RESULTS OF NUMERICAL CXPERIMENT (SERIES II, SET 1)

AX So ¥ LX/Yo| F/VS4 Yo/eT
(m) (m)

100 | 1/415 | 0.656 | 152 | 12.12 | 0.64 x 1077
250 | 1/675 | 0.759 | 329 | 12.55| 0.75 x 1077
500 | 17932 | 0.836| 598 | 12.77 | 0.82 x 107’
750 | 1/1118| 0.883 | 850 | 12.88 0.87 x 1077
1000 | 1/1262| 0.916 | 1092 | 13.00| 0.90 x 10~
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TABLE IT

RESULTS OF NUMERICAL EXPERIMENT(SERIES III, SET 2)

AX So Yo |AX/Y, | F/VSo Yo/gT
(m) (m)

100 | 1/435 | 0.670| 150 | 12.20 | 2.63 x 1077
250 1/680 | 0.761| 329 | 12.58 | 3.00 x 10-7
500 | 1/960 | 0.846| 591 | 12.78 | 3.32 x 1077
750 | 1/1180| 0.896| 837 | 12.94 | 3.52 x 1077
1000 | 1/1230| 0.930|1075 | 33.00 | 3.64 % 10~7

Comparing the second row of both tables, one can
see that when AX = 100 m the values of AX/Yo are
nearly the same (150 and 152 respectively), but the
value of Yo/gT in Table II is 4 times that in Table
I. Again the same can be observed when AX = 250,
500, 750 and 1000 m. Therefore, one can say that
parameter Yo/gT has little effects on AX/Yg.

Now further examination of Columns 2,4 and 5 in
Tables T and II will reveal that the value of

AX/Yo varies with So and F/v3, indicating a close
relationship among these three parameters. Because
in these experiments only Manning's coefficient of
resistance was kept constant (n = 0.0247) and Darcy-
Weisbach coefficient of resistance, f, was not fixed.
Consequently F/VSg = v8g/f is not a constant. The
variations of AX/Yg shown in these tables are there-
fore considered to be under the influence of So and
F/¥So. Since other parameters have been shown to
have little or no effects on AX/Yy, Eq.(8) is then
reduced to

o = £(s0, F/YV50) )
o]

For the present study, values of F/vSy being in a
small range (12.12 - 13.00), Eq.(10) can be further
reduced to

AL £(80)

Yo (10)

5 INFLUENCE OF CHANNEL SLOPE

The results of numerical experiments are plotted in
the form of Yo/AX vs. Sy, as shown in Figure 2 where
one can see that a straightline can be drawn
through the data points implying that AX is
inversely proportional to So- This straightline
intersects with the S, - axis at approximately

8o = 0.5 x 107° indicating that channel slope has no
influence on the maximum stable AX when S, is less
than this particular value. The straightline can
be expressed by

Y
E% = 3.3(Sg - 0.0005)

(11)
This equation confirms the theoretical results
expressed in Eq.(4) as well as the experimental
results expressed in Eq.(10),

The straightline of Eq.(ll) divides the plane into
two regions. The one above the line is the region
of stability and the other below it is the region

of instability. Now if the straightline is shifted
parallel to the left so that it goes through the
origin as the dash line in Figure 2, The whole line
falls into the stable region and can be expressed
by

¥

E§'= 3,485 (12)
or

AT = 0,385/, (12a)

The maximum stable AX determined by Eq.(l2a) is
smaller than that by Eq.(1l) and therefore it is

on the conservative side. Here it is interesting

to note that in water surface profile computation,
McBean and Perkin (1975) have shown that the maximum
stable AX = 0.6 Y /S . This is twice as large as
that determined by Eq.(12a) for unsteady flow.

6 CONCLUSIONS

Theoretical analysis has shown that the maximum
space-step size AX for unsteady flow simulation
using Preissmann's scheme can be expressed by

Yo kik Uo
BEC pE e e

where Y, = initial depth, Sg = channel bottom slope,
U, = initial velocity, g = gravitational accelera-
tion, At = time-step size, F? = U2/(g¥o) the Froude
number, and k k, = coefficients. This form of
relationship has also been confirmed by dumerical
experiments which result in

Yo
T2 = 3.3(50 - 0.0005)
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Figure 2 Results of Numerical Experiments
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for the range of present experiments. This
expression can be further approximately by

Yo

X 3.35¢

which yields conservative values of AX and
therefore can be safely adopted for application.
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