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SUMMARY A perturbation method is applied to the problem of anisotropic aquifers in which the ratio of

horizontal to vertical permeability is very large.

Although the ratio is assumed constant here, the

permeability can be a slowly-varying function of depth. An 'outer' expansion is used to represent the
pressure field in the interior of the permeable medium, while an 'inner' expansion represents the pressure

boundary layer close to the ground surface.
of uniformity in time.

Use is made of strained coordinates in discussing the question
The first term of the outer expansion provides a good fit to pressure measurements

taken at deep wells in a geothermal field undergoing drawdown.

1 INTRODUCTION

In an earlier paper (Wooding, 1979), a detailed
analysis was made of pressure data taken in the
Tauhara geothermal field, over a period of about 14
years, during the process of drawdown at the neigh-
bouring Wairakei field. The five observation wells
were located at distances of about 2 through 7 km
from the main withdrawal area.

A standard aquifer model with umiform properties in
the horizontal plane and simple boundary conditions
- impermeable upper and lower boundaries, and a
straight boundary impermeable to horizontal flow
located to the south-east of the field - provided a
surprisingly effective 'fit' to the pressure data.

Additional requirements on the model were an
initial steady horizontal ocutflow from the Wairakei
field which could be identified with the natural
convective flow, and a vertical pressure gradient
which would induce a distributed downflow of

groundwater if finite vertical permeability existed.

This vertical gradient is present in the production
zone corresponding to the main aquifer of the
model, and appears to be a consequence of the ex-
ploitation at Wairakei; such a gradient could be
maintained provided that the field is undergoing
sustained drawdown, and provided that the fluid
mobility (defined as the ratio of permeability to
dynamic viscosity) for horizontal flow increases
with depth, so that the rate of horizontal propaga-

tion of pressure drawdown increases with depth also.

A relatively low mobility for vertical flow would
also be necessary to account for the observed mag-
nitude of the vertical pressure gradient; a multi-
layered field structure which exhibits this
property 'in the large scale' has been discussed by
Wooding (1978).

In this paper, an approximate theory is developed
to treat the case where the ratio of vertical to
horizontal fluid mobility is very small, using the
method of matched asymptotic expansions.

2 THEORY

The system to be analysed comprises a semi-infinite
porous medium (0 <z <), where z is measured ver-
tically downwards in a cylindrical coordinate sys-
tem (r , z) with origin situated in the surface. A
vertical well of diameter 2a and unlimited depth is

located at r = 0. (Subsequently a =+ 0 will be taken
so that the well becomes an idealised line source or
sink.) It will be assumed that the medium is hori-
zontally stratified, isotropic only in horizontal
planes so that the vertical permeability differs
from the horizontal, and both are functions of z;
let the permeabilities be ki(z), ka(z) in the r- and
z-directions respectively. Although the depth of
the well is unlimited, it may be desirable to limit
the flow field in the vertical, either by assuming
that kq(z), ky(z) tend to zero appropriately as

z + =, or by letting kq = ko = 0 below some given
depth. In either way, a finite well flow rate Q

can be specified.

Now, if the dynamic viscosity is u(z), the fluid
mobility has components Aq(z) = kq(z)/u(z) and
A2(z) = ka(z)/u(z) respectively. From Darcy's law,
neglecting gravity,

u-= —11(Z)Pr , W= —lz(z)PZ (1a,b)
where u, w are flow rates in the r- and z-direc-
tions, P is the pressure and ( )y = 9/3y, etc. If
the compressibility y of the porous medium is taken
to be constant, the equation of continuity gives

i T u/r + W= 0 (2)
in which P is the pressure and t denotes time.

A convenient simplification, justifiable in the
absence of specific information to the contrary, is
to take k;(2)/ky(2) = A (2)/Ay(2) = €2, say - a con-
stant. That is, the horizontal and vertical permea-
bilities depend upon only one function of z. Put
Aq(2)/y = D(z), A(2)/y = €2D(z). Then elimination
of u, w between (1) and (2) leads to

P, = D(z)AP + az{D(z)Pz}z (3)

for the pressure, where D(z) is analogous to_a
variable diffusivity. Here A, = 32/dr? + r™Ta/or .

2.1 Initial and Boundary Conditions

If a flux boundary condition is desired at the well
(r = a), this can be applied conveniently as a total
flux or flow rate Q(t), into or out of the well. The
actual flow rate in the field will be distributed
with depth according to the distribution of fluid
mobility.
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Let the total flux Q be a constant, after being
started at t = 0. The initial field pressure P can
be taken as zero. As gravity is neglected, P is
always independent of z at the well.

The other boundary condition of importance is P = 0
on the plane z = 0, for t = 0. Other boundaries
could be introduced at z = constant > 0, and the

conditions there should be amenable to treatment
similar to that used for the condition at z = 0.

2.2 Integral Transforms

If the Laplace transform of P with respect to time
is defined as

P(r,2,5) = [ P(r,z,t) e Stat 4
then equation (3) gives

sP = D(z]/_\.r?+ Ez{D(z}?z}z (5)

The Bessel transform is introduced in equation (25).

2.3 Outer Expansion

Now assume that P, and its integral transforms, can
be represented by regular perturbation expansions
in powers of €; for the Laplace transform,

— — 2_

P = PO +HETPy Tk, (6)
Here a term in 0(g) could have been included, but
it would have obeyed the same differential equation

as Pg. (In some cases its inclusion might still
be necessary.) Substituting (6) into (5) gives
. 2_ = D
0(1): qQ°Py = AP, (7a)
2_ — p—
0(e?): aF, = 4P, + {D(2)P, } /Diz) - (7b)

where q2 = qz(z,s) = s/D(z).

A comparison with (5) indicates that each equation
of (7) has lost its derivatives of the dependent
variable with respect to z. That is, z enters each
equation only as a parameter, so that it is more
readily solved than the original equation (5). In
general, however, equations (7a,b,...) camnot
satisfy boundary conditions specified at any given
z; (6) has the character of an outer expansion.
Unless this expansion satisfies the boundary condi-
tion P = 0 fortuitously at z = 0, the solution must
assume a boundary-layer character at small z. This
boundary-layer can be represented by an inner
expansion with a suitably scaled z-variable.

The coefficients in the outer expansion (6) are
calculated successively:

0(1): Let x(r,z,s) = q(z,s)r. Then, in the nota-
tion introduced at equation (3), (7a) becomes
(Ax-1)Py = 0. Since P+ 0 as r + « (from the
initial condition P = 0), the solution is of the
form

Py(x,2,5) = Ag(2,8) Ky (x) (8)

where Ky is the modified Bessel function of order
zero which is singular at the origin. But P is
independent of z on r = a, giving Py = Py (x4,S) =
Ppa(s), say, and

A[] (Z,S) = ?Oa(s) /Ko(xa) (QJ

where x, = x,(z,s) = q(z,s)a.

From Darcy's law, the flux per unit height is given
by F = -2maAq(z) 9Py/8r|y=p,and its Laplace trans-
form can be written as

F = —2ﬂayD(z)q(z,S)ﬁha(S)Kéfxa)/Ko(XaJ (10)

using (9) and a differentiated form of (8). Then

the Laplace transform of the total flux Q is
Q=Qs-= fafdz

Combined with (10), this gives an expression for
Pga(s), the transform of the leading term for well

pressure. From (8) ff.,
Py(x52,8) = C,(z,s) Ky(x)/s (11a)
if
Cal(2,8) = Q/{2maKg (x) ¥/ 042D (2)a (2, 5)Ky (xa) /Ky (%) }
(11b)
Now, let a = 0: Cy(z,s) = Cy = Q/(2mAH) (12)

where AH = yf?D(z) dz = [y}, (2z) dz is the mobility-
thickness product. Then, in the limit a - 0,
= CoKg(x)/s (13)

1o [ e dv/v = 3CeEq (n) (14)

Py(x,s)

1

and  Py(r,z,t)

is its inverse in terms of the exponential integral
(Abramowitz and Stegun, 1965). In (14),

n = r2/{4D(z)t} .

In the standard aquifer model, which assumes 'top-
hat' permeability profiles, H is the aquifer thick-
ness and A is the fluid mobility. If D(z) is con-
stant, equation (14) reduces to the solution for an
aquifer of that type, with impermeable upper and
lower boundaries. However, although AH is readily
determined from field observations, it is difficult
to establish the separate factors with precision
(Grant, 1977a,b; Wooding, 1979).

In the steady state, the solution reduces to
2,2
Po(r,z) = 3Cplog(ri/r™) + Py, (15)

where Py, is a reference pressure given at r = rq.
This is indistinguishable from the solution for the
standard model, although the distribution of flow
rate differs in the two cases.

0(52): In terms of the variable x(r,z,s) = q(z,s)r,

if it is assumed that a - 0, equation (7b) becomes
(8 - )P, = -{D(2)Py, },/{D(2)a°(z,5)}

_CU

——{(D'/D) '2xK, (x) + (D'/D) 22K (o)

4sq

(16)
after substituting for P, from (13) and expanding
the Tighthand side. Here { )' = djdzand K, signifies
a modified Bessel function of order m, singular at
the origin.

With the aid of the identity
(8 - YLK () /2n¥ = =T Ky () a7

the particular integral of (16) can be written down
at once:
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g
D_{(0!/D)'3x°K, () + (D'/D)*x 7K, (X))

?2 {X’z ’S) =
24sq (18)

The general solution involves a term Aj(z,s)Kq(x)

which tends to zero as x + «=. However, since the

total well flux has been specified at the well, it
is necessary that

Lin [7D(2)q(z,5) By (x,2,8)dz = 0 (19)

a-r0

This condition is satisfied identically if Py is
calculated from (18), so that Az(z,s) = 0 in this
limiting case. (Note that, in the general case for
which r = a is finite, A, does not vanish.) Then
the 0(e2) correction to the pressure is given, by
inversion of (18), as

Py(1,2,t) = 24 Co {('/D)" 6Dte™ +

+ (D!/D)2.__If___

_e Tk, ()i (20)
(4nDt) > =

2

2.4 Imner Expansion

From the form of equation (3), or of its Laplace
transform (5), it is evident that the term involv-
ing diffusion in the z-direction is significant
near the boundary z = 0 at distances of 0(g);
therefore, let

Z=z/e (21)

be an inner variable so that (6), for example,
becomes

sP = D(eZ)AP + {D(eL) ?Z}Z (22)
It will be assumed that D possesses a Taylor expan-
sion at z = 0. Now, assume that P, for example,
has the inner expansion

P=P%+ PN 5 (23)
Then, if D is expanded in powers of €, (22) gives
0(1): qS?(D)

= 4,519 & B (242)

: 25(1) =, 5(1) L, (1
0(e): qyP AP + P #
0 =(0
+ /D) (28, 'O + (Z8;”) ;) (24b)

where q, = qq(s) = s/D(0) = s/D; .

0(1): Assume that a + 0, and introduce the zero-
order Bessel transform

P (£,z,s) = f‘gﬁ(o) (r,Z,s) Jy (Er) rdr  (25)

~=(0 : = =~
Then 20 = - 1im (PP - £2P(O) (26)
T-0
Now, - lim (P '?)) = - lim P ) =C /s from
r+0 T r+0,z+0 0T 0

(13), and the general solution for the Bessel
transform of (24a) is
=(0 =
B (6,2,5) = Al +Be X rcy/(sx®)  (27a)
- 2
where Xz = qﬁ + g (27}3)

This solution must be matched to the Bessel trans-

form of the first term of the outer expansion; from
(13),

50(5,2,5)

1t

(C3/s) {a*(z;5) £E2}7] (28a)

(Co/sx?) {1 - 2eq4a5Z/x% + 0(e?)}
after substituting the inner varjable Z and expand-

ing in powers of e. Therefore, P is matched to
0(1) by the particular integral in (27), and A = 0.

(28b)

For the given boundary condition P = 0 at z = 0,
(27) gives

B (£,2,5) = (Cy/s) A -e D)X (29)
and the inverse Bessel transform is
(Co/s)IKy(qpr) -

- f7de exploqq(x? +c) T/ (22 +12) ™
(il = R

(@ (r,Z,s)

I

exp(-q,r cosh ¢)d¢
(30)
Since letting the upper limit of the final integral

in (30) tend to infinity gives Ky(qgr), the integral
behaves 1like an 'incomplete modified Bessel function'.

0(g): Taking the zero-order Bessel transform of
equation (24b), and substituting for P(®) from (29),
leads to the equation
B - i () - 2D 1 ED
-0
+ (Co/sx2) DL/D){a2Z(L - e ) +xe X
(31)

where P 1T 18
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Here -1im(xP") = -lim  (rP,,),
0 >0,x>0
derived from the 0(e) term in (28b). This limit is
zero. Then the solution appropriate to the boundary

condition P = 0 at z = 0 is

P (£,2,5) = (Co/sxD) @YD) 2/ +

s - -zmer (D)

The first term on the righthand.side matches the
0(e) term in the expansion of Py and so, in a
uniformly-valid composite expansion, would represent
a common term to be dropped. The remaining terms
tend to zero exponentially as Z + «.

Formally, the inverse with respect to the Bessel
transform in expression (32) can be written down as
a sum of integrals

P (r,2,5) = (Cy/s) (D/Dy) Uaglak, (gor) +

+ KL{2F, - O°F, - 422 F,}] (33)
where

B SE (,2,q7) = J’Ox'n’1e'XZJO(Er)EdE

(1)) 20" derexpl-ay (4B (e
(34)

Inversion of the Laplace transforms (30) for
P(0)and (33) for P(1) has not been attempted by
analytical means. Several efficient algorithms for
numerical inversion are known, and previous
experience using the Gaver-Stehfest algorithm (Steh-
fest, 1970; Sandal et al., 1979) suggest that this
method should be fast and accurate. Gemerally, the
algorithm is suited to monotonic functions which
include the class of well functions considered here.
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2.5 Strained Coordinates

In the outer expansion, the leading term (14) has a
logarithmic singularity for t -+ =, while in equa-
tion (20) for the second term the righthand side
grows asymptotically as t, so that the expansion is
not wmiformly valid in time. Lighthill's technique
may be applied to render the series Py +e2P,+ ...
uniform. For example, straining the t—coorﬁinate,
let

t = T-+52t2(z,T) oo (35)

and substitute into (14) and (20) (Pritulo, 1962).
However, the simplest form obtainable for t, is

ty(z,1) = -&M@'/D)' + 2('/D)2De? (36)

which limits t to a finite range of values. This
result could be expected on physical grounds since,
as the pressure disturbance spreads laterally, the
influence of vertical flow becomes increasingly
important. Similar considerations would apply to
the inner expansion.

3 RELATIONSHIP TO DATA

The analysis described by Wooding (1979) for
pressure data from the Tauhara geothermal field can
be adapted readily to use the present theory. How-
ever, the boundary-layer zone is not within the
scope of the theory because two-phase effects are
encountered at shallow depths. (In any case, the
present observations do not cover that range.)
Also, the influence of higher perturbation quan-
tities is undetectable due to scatter in the
measurements. Hence only zero-order terms of form
(14) and/or (15) appear to be usable.

Let the zero-order pressure-field model be
P = APy (r,z,t) + {Qy/ (4nAH) } log (x3/r®) +B (37

where Py is given by (14). This term involves
D(z), here assumed to be given by

¥D(z) = AH{1+C(z - Z)} (38)

where zy is the mean value of the z-observations.
Then A, B, Q and C are regression coefficients,
where C involves a non-linear regression.

Parameter values are taken from Table 2 of Wooding
(1979), and the notation is identical except for
the mobility A = X and the different use of para-
meter C. The variance-ratio F as defined in that
paper is used to test significance (Beyer, 1966).
The field model, which is described briefly in the
Introduction, corresponds to model 2 of Wooding
(1979) with an impermeable boundary to the south-
east of the Tauhara field.

Table 1 shows results from a hierarchy of regres-
sion models. Evidently the parameter C, correspon-
ding to a linear variation of fluid mobility with

TABLE 1

SIGNIFICANCE TESTS ON 72 OBSERVATIONS
FROM 5 TAUHARA WELLS

Regression Degrees of  Sum of Signifi-
Coefficients Freedom Squares F cance
A,B 70 40.78
A,B,Qp 69 24.28 68.7 <<1073
A,B,Qp,C 68 16.00 34.9 <<1073
A,B; 66 15.69 0.75 not sig.
A;,B; 62 14.90 0.82 not sig.

Well number i = 1,...,5.

depth, is highly significant. The fitted value is
C = 2.95 x 1074 per metre depth. Permitting the
initial well pressures to vary arbitrarily between
wells (A ,B;) and the drawdown rates to vary (Ai,B;)
does not significantly improve the goodness of fit.

Other fitted coefficients are A = -0.982, giving a
permeability thickness of about 35 Darcy-metres

(1 Darcy = 10" '2m2), B = 78.8 bars and Q; = 0.45
tonnes/sec. (natural steady source strength).
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