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SUMMARY Two methods are outlined for predicting the location of the sea water interface in an aquifer

discharging to the sea.

One method assumes an abrupt interface when no mixing of the salt and fresh water
occurs and the other accounts for dispersion which produces a mixing zone where the two waters meet.

For

the immiscible fluid case, boundary integral and finite element methods are used to determine the interface
location while for the miscible fluid case the relevant equations are solved by finite difference techniques.
The effects of different dispersion coefficients are evaluated with the miscible fluid model and the
locations and shapes of the interface zones are compared with results from the abrupt interface assumption.

1 INTRODUCTION

When a coastal aquifer discharges fresh groundwater
to the sea a mixing zone or interface occurs where
fresh water meets the salt water. The location,
shape and thickness of this zone depends on the
groundwater discharge rate, the tidal range and

the hydrogeologic properties of the aquifer. One
method of determining the interface location is to
assume that salt and frash water are immiscible and
to solve the relevant flow equation in each fluid
separately. The interface location is determined
so that the boundary conditions for both fluids are
satisfied. The immiscible fluid assumption was used
by Henry (1959) in obtaining solutions by the hodo-
graph method. Cantatore and Volker (1974) present-
ed a finite element formulation for the problem
which allowed anisotropy and nonhomogeneity to be
catered for as well as the presence of pumping or
recharging wells in the vicinity of the interface.
Volker and Young (1979) compared the finite element
and boundary integral solution techniques for this
problem.

In a real aquifer there will always be some dis-
persion resulting in a finite thickness 'of interface
and hence the abrupt interface can only be expected
to give a reasonable indication of the salt water
position when dispersion is small. If mixing of the
two waters is significant the salt distribution can
be predicted by combining a flow equation with the
convective-dispersion equation for mass transport of
the salt. For real aquifer conditions these equat-
ions are usually solved by numerical methods such

as finite elements (Lee and Cheng, 1974; Huyakorn
and Taylor, 1976) or finite differences (Volker,
1979).

This paper compares results obtained from both the
immiscible and miscible fluid assumptions.

2 MATHEMATICAL FORMULATION

2.1  Immiscible Fluid Assumption

When a line interface between fresh and salt water
is assumed then, for either fluid, the concentration
and density are constant and Darcy's law can be
combined with the mass conservation equation to
yield the flow equation to be solved. The general
form of this equation is
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where h is the piezometric or hydraulic head [L];

K.. is hydraulic conductivity of the aquifer medium

[t4717]; and X;s X; are Cartesian coordinates [1].

For a two-dimensional section of a homogeneous
isotropic aquifer (1) reduces to the Laplace equat-
ion (Cantatore and Volker, 1974):
2
3*h/dx, * + 9%h/03x,% = 0 (2)
To describe the boundary conditions, consider Figure
1 which represents schematically a vertical section

through the seaward end of a coastal confined
aquifer.

Figure 1 Abrupt interface in a confined aquifer

For the steady state position of the interface CD
there will be no flow in the salt water region and
CD can therefore be considered as an impervious
boundary section for the fresh water flow field.
The upper and lower confining strata BE and AC are

also impervious boundaries for steady flow. This
condition is represented by
gh =
SR g )

where n. is the component in the X, direction of
the unit outward normal to the boundary.

The interface CD must have equal pressures in the
fresh and salt water for equilibrium which leads to
(Cantatore and Volker, 1974):
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where pS and pg are the mass densities of salt and



fresh water respectively; and h is head at a point
on the interface whose vertical coordinate is x,.
On AB a constant head or constant flux is specified
while on ED the head distribution is also given by
(4).
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The miscible fluid model requires the solution of
two equations, the flow equation and the convective-
dispersion equation, to describe the contaminant
movement. Huyakorn and Taylor (1976) defined hy-
draulic head h as:

h = p/(pg8) + x, (5)

where p is pressure ML 'T™2]; g is acceleration due
to gravity [ LT 2].

By combining Darcy's law with the continuity equat-
ion, the ground water flow equation can be derived
as:
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where Kf- = k. : pfg/u and represents hydraulic con-

ductivity of the aquifer medium to fresh water
[Tz kij is intrinsic permeability [L%]; and
Y is viscosity [ML’lT‘l]

The density p is expressed in terms of the concen-
tration c using:
p/p, = 1 + ec! (7

where € = (os - pf}/pf; and ¢' = c/cs, where ¢y is
salt concentTation in sea water.

Density p can thus be eliminated from (6) leaving

the equation in terms of h and c as the only unknowns.

The convective dispersion equation for mass trans-
port of salt can be written (Huyakorn and Taylor,
1976) :
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where D;: is a component of the hydrodynamic dis-
persion toefficient tensor [L>T ']; © is porosity

of aquifer material; u; is a Darcy velocity component
[LT ']; c is salt concentration [ML™’]; and t is
time.

Neglecting molecular diffusion, the dispersion
coefficient is usually assumed to be a tensor with
components given by:

Vi\fj
- (9)

Dij = DTsij + (DL-DT)
where v;, V; are pore velocity components (u;/8 and
u:/0 respec%ively); v is resultant pore velocity
magnitude; 8ij is Kronecker delta; and D;, Dy are
effective longitudinal and lateral dispersion
coefficients respectively, given by:

D. =d.v
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where d , d, are dispersivity components [L].
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Where the width of the dispersion zone is
influenced by local nonhomogeneities and other
factors such as tidal variations it may be more
convenient to use a scalar dispersion coefficient
of sufficient magnitudé to account for these
factors (Lee and Cheng, 1974; Huyakorn and Taylor,
1976) . Solutions are presented in this paper for
both cases for comparison purposes.

Equations (6) and (8) have to be solved in conjunc-
tion to determine the salt distribution in the
interface zone. The boundary conditions applicable
for a confined aquifer are shown in Figure 2.
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Figure 2 Boundary conditions for miscible fluid

model

On the upper and lower confining strata the
boundary conditions preclude flow of water or salt
across the boundaries. On the sea water boundary
a zero concentration gradient is set where water
flows out of the aquifer and for the remainder the
concentration is that of sea water. Further

details are given by Volker (1979).
3 SOLUTION TECHNIQUES
Fa L Boundary Integral and Finite Element Methods

For the abrupt interface approximation the govern-
ing equation in the fresh water flow field can be
solved by the finite element techmique. The Galer-
kin weighted residual method is used and Green's
theorem is applied to reduce second order differ-
entials to first order ones. The general procedure
is outlined by Zienkiewicz (1977) and the particular
application to seepage and salt water intrusion
problems is explained in more detail by Volker and
Young (1979).

The boundary integral method presented by Liggett
(1977) can also be used for this problem. This
procedure involves a discretization of only the
boundary of the flcw field and hence has some
advantages in solving problems where the location
of at least one boundary is unknown because it is
easier to relocate the boundary elements in the
solution process than it is to readjust a mesh

of elements covering the whole flow domain. Details
of the method are given by Liggett (1977) and
examples of its application to salt water intrusion
problems are presented by Volker and Young (1977).
3.2 Finite Difference Method

For the miscible fluid model solutions have been
obtained by a finite difference method. With high
velocities or low dispersion coefficients, the
solution of the convective dispersion equation can
lead to numerical difficulties usually referred to
as numerical diffusion and dispersion. In order to
overcome these problems a method modified from that
suggested by Spalding (1972) has been used. Further
details are given by Volker (1979) where it is also
shown that sufficient accuracy in the solutions can
be obtained by using an appropriate finite difference
mesh size.



4 RESULTS

The first problem studied was that of a homogeneous
isotropic confined aquifer 50 m thick with a con-
stant scalar dispersion coefficient. A vertical
outflow face was assumed and a 100 m long horizontal
section was adopted for the finite difference mesh.
This is a similar geometric configuration to that
used by Huyakorn and Taylor (1976) and other
investigators before them. Other relevant para-
meters are: KE (a scalar in this case) = .001 ms ';
D=1.10 x 107" m?s™! (9.47 m?day *); 6 = .30;

€ = .025; upstream freshwater head gradient =
-.006575. The results in terms of dimensionless
concentration contours are shown in Figure 3.

Also shown in Figure 3 is theé abrupt interface
determined in this case by the boundary integral
method; the finite element solution gave an almost
identical result. It can be seen that the abrupt
interface location is very different from that of
the mean isochlor (¢' = .5) line. This is because
there is actually a circulation set up within the
salt water region to replenish salt that is
"skimmed" off by fresh water in the upper region
of the interface. This effect is not accounted
for by the immiscible fluid model which therefore
predicts a greater intrusion length than the
miscible fluid model.
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Figure 3 Results for D = 9.47 m® per day

The effect of decreasing the dispersion coefficient
was then investigated. Figure 4 shows dimensionless
concentration contours for the same conditions as

Figure 3 except that D = 1.67 x 107°% m?s ! (1.44 m?

the miscible fluid results shown in Figures 3 to

5 and it also requires less information on aquifer
properties. There is therefore an incentive to use
the immiscible fluid model if it is sufficiently
accurate. Results similar to those in Figures 3 to
5 would provide the data from which to assess the
applicability of the abrupt interface result for

a particular aquifer.

The influence of anisotropic dispersion was studied
by introducing the dispersion coefficient tensor
with components defined by (9). Results are given
in Figure 6 for the same aquifer properties as in
Figures 3 to 5 except that the tensor dispersion
coefficient was used with d;, = 25 mand d, = 8.33 m
{see (10a) and (10b)}. The abrupt interface loca-
tion is also shown in Figure 6 for comparison
purposes.

The effect of decreasing the dispersivities is

shown in Figure 7 where the values of d, and d, are
5 m and 1.67 m respectively. Although the shaves of
the interface zones are different from the scalar
dispersion coefficient case, the change produced by
decreasing the dispersivities is similar to that
produced by using a small scalar coefficient.
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Figure 5 Results for D = 0.29 m? per day

fresh water

day !). Figure 5 shows a further decrease in_
dispersion coefficient to D = 3.35 x 10 P om2sT!
(0.29 m*day '). The immiscible fluid (abrupt inter- 25
: : ] abrupt
face) result is also reproduced on these figures St erface
and it is observed that as expected, the two solu- S
tions converge as D decreases. For the smallest ] x, (m) -~
dispersion coefficient used (Figure 5) there is 1 T
good correspondence between the solutions. ,/"’ '0? -Im "l
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Figure 6 Results for d; = 25 mand d, = 8.33 m
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It should be noted that the abrupt interface solution ’ x,1m), 20
is far less expensive on computer resources than are Figure 7 Results for d) =5mandd, = 1.67 m
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Figure 8 The effect of a reduction in freshwater discharge

Figure 8 shows the equilibrium interfaces calculated
for an aquifer similar to that of Figure 3 except
that the fresh water flow rate has been reduced by
50 percent. An aquifer section of 200 m in the
horizontal direction has been used in this case
because of the larger ingress of salt water as a
result of the smaller fresh water discharge. The
smaller freshwater velocities also mean that
dispersion is relatively more important and hence
the large discrepancy in the locations of the
abrupt interface and the c¢' = 0.5 concentration
contour.  In general, the abrupt interface will
give a ‘progressively less accurate approximation
for the actual mean interface as the dispersion
coefficient increases or the fresh water discharge
rate decreases.

% CONCLUSIONS

It has been shown that both immiscible and miscible
fluid models can be useful for predicting the salt
water interface in coastal aquifers discharging

to the sea. The immiscible fluid model has the
advantage of significantly lower computational costs
and fewer numerical difficulties as well as requir-
ing less field information. The miscible fluid
model, on the other hand, gives a more complete and
more faithful picture of the actual interface
location and salt distribution. This feature
increases in significance as the dispersion coeff-
icients (or dispersivities) increase and as the
fresh water discharge rate decreases.
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