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1 INTRODUCTION

The vertical force on a cylinder submerged in a
uniform stream was first studied by Havelock [1] in
which a doublet is used to represent the cylinder.
It is found that this vertical force is directed
downward when the doublet is near to the free sur-
face; this force changes to upward direction
beyond a certain depth of submersion before it
vanishes at greater depth. In other words, there
is a range of submersion where the rate change of
this vertical force with respect to the depth is
positive. Thus one would respect the doublet
(representing a cylinder) to possess a natural
frequency of oscillation in the vertical direction.

Tuck [2] extends the solution for doublet waves by
considering the non-linear effects. He uses a
series of images of the doublet which is generated
by successive reflections across the free surface
in order to obtain a closer approximation for the
flow around the cylinder. He discovered that no
closed streamline can be formed by a finite number
of images generated in this way. As each addit-—
ional image also introduces its wave system, a
closed circular streamline will contain all the
images as singularities within it and a complete
free surface wave system. It is essential that
all these singularities and their waves system be
considered when evaluating the forces on the
cylinder. An evident example is in the evaluation
of forces by the Blasius formula depends on these
singularities. Further, for non-steady flow, for
example [3], the Blasius formula will only be
meaningful if the perimeter of the cylinder is a
streamline. These requirements can be met by
numerical mean and will be discussed in the mnext
section.

The frequency at which the cylinder will oscillate
will also depend on the wave radiated by its
oscillation. However, if one is interested in the
frequency of the cylinder oscillating with very
small amplitude, then the radiating waves system is
negligible.

This frequency f is given by
gl [
f=oriu

where k is the first derivative of the vertical
force with respect to the depth of submersion, and
M is the effective mass of the cylinder

(1)

2 FORMULATION AND NUMERICAL SCHEME
2.1

Consider that the amplitude of the free surface

The Free Surface Equations
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wave is small compared with both its wavelength and
the depth in which the cylinder is submerged.

Thus the condition on the waves can be extrapolated
from that along the calm free surface. Let the
x—-axis be the horizontal axis and u(x) and v(x) are
the horizontal and vertical wave perturbed

velocity components on this calm free surface.

The Poisson Integral relates u(x) and v(x) as
follows :-
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where the Cauchy Principal Value of this is to be
considered.

A circle of radius 'a' representing the cylinder
has its centre at the origin of the cartesian co-
ordinate system. The calm free surface is
parallel to the x—-axis and situated along the line
whose ordinate is 'd' which is the depth of
submersion. When u(x) is known along the calm
free surface, the use of equation (2) implies a
bounded vortex sheet with vorticity distribution
2u(x). Let U be the velocity of the free stream
and denoting the complex variable z = x + iy, the
complex velocity vector q of the flow. After
making use of the Miln-Thomson circle theorem, the
conjugate complex velocity q is given by :
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It can be easily verified that the perimeter of the
circle is a streamline and there is no net circulat-
ion within this circle.

On the free surface z = x + id, let u'(x) - i v'(x)
represent the conjugate complex velocity which
arrives from the image of the free surface :
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and for the velocity components due to the doublet
term :

Ua’
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u"(x) - iv'(x) =

Let ¢(x,t) be the velocity potential on the free
surface excluding the doublet term and let h(x,t)
be the wave height. The linearized force surface
condition and kinematic condition are given by :

¢= = ghs Ulu(x) + u'(x) + u"(x)] (6)
and
ht =v(x) +vi) + V() - Uhx )
from the above definition of ¢ we have
u(x) + u'(x) (8)
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222 Numerical Scheme

Equations (6) and (7) can be solved numerically as
an initial value problem. The numerical approx-
imation for the singular integral as shown in (2)
is carried out by discretizing the free surface
into a finite element of equal length Ax. Let
%5 be the mid points of the jth segment for

Fo= L2y vt These n segments cover a
sufficiently large interval such that the contri-
butions of the integral beyond this interval are

not significant. Thus,
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Within each segment, from X - % Ax to X + -;—Ax,

the value of u(x) is approximately

u(x) = u, + [%] x-%)

*x

(10)

Hence each term in the summation of equation (9)
can be expressed as :
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where ij is the Kronecker delta.
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Note that the values of [Bu/ax] 1 ins(11); ¢x in

(8) and hx in (7) are derived by numerical differ-

entiations. A fourth order Runge-Kutta method is
used for the time wise integration of equations (6)
and (7). Equation (8) has to be solved by an
iteration process whenever u(x) and u'(x) are to be
separated.

23 The Blasius Formula

The horizontal force X and the vertical force Y can
be evaluated from the Blasius Formula :
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where e is the time derivative of the complex

velocity potential given by,
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The free surface condition (6) is used to express

gl_u in terms of other variables, thus
t

_8_ = = i ' 1"
ot e gh, = U o (o £ F e

(14)

replace u' and K.

By means of equation (4) to -
can be generateé.

monotonic decreasing series

of the time derivative
[(12) and (13)] will

In general, the integration
term of the Blasius Formula
depend on the choice of the cut in the complex
plane. However, as no net circulation is found
within the cylinder, a unique wvalue is obtained.
Let this term be denoted by X; — i Y3 and X2 - i Y2
represents the remainder of (12), we have,
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Numerical treatments of the above integral are Al

consistant with that used for equation (2). | = —]
o B6 -

3 RESULTS AND DISCUSSION ol

The waves generated by a cylinder of radius sy

=053 /g with depth of submersion ranging from
d = 1.0 U*/g to 2.5 U%/g are computed. The
initial conditions are chosen to be u(x) = 0 on the

A A

free surface. A sample result is shown in | = ==
figure 1. As the computation proceeds, waves \/

begin to develop with a wavefront travelling down-— 21

stream at the group velocity 0.5U. A dominant i Ayt i
sinusoidal wave form is established very quickly '

which has the wavelength and amplitude of that
steady state solution [4]. These are :

Ay = 27mU%/g an
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There is another wave train with a wavelength twice
the value of X  and an amplitude just under 0.2 Ag 35
This amplitude diminished slowly with time. ThlS | [\ /\ i .
transient waves system is found to be dependent on = \/ \j \/ :
the initial conditions. As one observes down-
stream of the cylinder, the amplitude of the waves 40.
increases to 1.3 A; and then reduces gradually to | [\ /\ f\/ |
zero towards the wave front. \/ \/ \/

The forces are evaluated from equation (15) and
(16). The plots of horizontal force X(= X; + X3z)
and vertical force Y(= Y, + Y2) with respect to
time are shown in figures 2 and 3. Due to the

= T
existence of unsteady components in the forces, oA

these lines oscillate in phase for different values - = 3 o5
of depth d. The amplitude reduces as depth AL

increases. For depth equal to 2.5 U2/g, the mean 50
value of horizontal force is 2.72 x 103 p U“/g and
is 26% higher than the wave resistance predicted by ' \/ \/ \/ :
linearized steady doublet waves system. This

dlscrepancy increases to 46% when the depth is 55 /\
1.0 U%/g. For vertical force, Y, averaged over I - [\ /\ AN ]
time, the comparison with Havelock's result [1] for \/ \j \/ \j v

linearized steady doublet waves system shows that
the magnitude of the present result is larger by [\ /\ /\ /\

12% at depth equal 2.5 U?/g and 23% at 1.0 U2/g. — = !
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The average value of the vertical force Y and its
derivative with respect to depth k are plotted in
figure 4. The value of k is used as a first

approximation for the estimation of the frequency

in vertical oscillation. Thus in the absence of o 2 i /\ /\ [\ /\ A
damping and external forces, the equation of motion = !
of the cylinder is : g *J Y \/ v e
o
; S ANAAN A ,
My+ky =0 (19) \/\/\/\/\/V
7%
where y is the vertical displacement of the cylinder B /\ /\ /\ /\ /\\f\
from the origin and M its effective mass. When the \/ \/ \/ \/
depth is greater than 2 U?/g, the value of k becomes -
negative and hence the cylinder has no natural 1 o /\ N /\ N /\ A
frequency beyond this depth but the force tends to f / \/ \/ \] \/ = !
move it towards the free surface. As the depth \j
decreases from 2 U?/g to 1.25 U?/g, the value of k
increases from zero to 0.04 p U2. As an example, a
neutrally buoyant cylinder under this unsteady
condition will have an effective mass close to Figure 1. Waves generated by cyligder at various
twice the value of its added mass, i.e. 2Tp a’. time T = t g/U. The abscissa xg/U” is the calm
As d = 0.3 U /g and the natural frequency f for this free surface, The ordinates h/AS is the non-
case is given by . dimensionalized wave height. Radiusaof cylinder
g |k ag/u* = 0.3, depth of submersion dg/U® = 2.5.
0.281 Uz o

62



0.04} h=1.25 T
0.03}-

0,02}

HORIZONTAL FORCE
! \;ééu

0.01 h=2.0 s
h=2.5
s
L n L L ] 1 i L 1
0 50 100
TIME

Figure 2. Plots.of horizontal forces X g/(pu")
against time t g/U for depth dg/U% = 1.25, 1.5, 2.0,
2.5.  Radius of cylinder ag/U? =0.3.
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Figure 3. Plots of vertical force Y g/ (pU")
against time t g/U for depth dg/U22= 1.25,.1:55
2.0, 2.5: Radius of cylinder ag/U” = 0.3.

4 CONCLUDING REMARKS

It has been demonstrated that the boundary
condition of a submerged cylinder is important
and must be enforced in order to compute the
force exerted by the waves on the cylinder. The
estimation of the natural frequency of a submerged
cylinder can only be considered as a first
approximation. The numerical method presented
here has more general application in the simulat-
ion of transient water waves. It can be applied
to the case of an oscillating cylinder. The
equation for oscillating doublet and the
corresponding images will have to be introduced
into equations (4) and (5). Finally, the
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Figure 4. Plots of average vertical.farce'Yg/(pU“)
and its gradient k/(pU?) against time tg/U.

presence of vorticities shed by the cylinder is
known to produce oscillating forces on the
cylinder as shown in the work by Sarpkaya and
Shoaff [5]. The extent in which the surface
wave force is affected by these shed vorticity
required further investigation.

REFERENCES

[1]  HAVELOCK, T.H. (1929). The vertical force
on a cylinder submerged in a uniform stream.
Proceeding of the Royal Society, London, A,

vol, 122, pp 297-303.

[2] TUCK, E.O0. (1965). The effect of non-
linearity at the free surface on flow past a
submerged cylinder. Journal of Fluid Mechanics,
vol. 22, part 2, pp 401-414.

[3] HAVELOCK, T.H. (1949). The resistance of
a submerged cylinder in accelerated motion.
Quarterly Journal of Mechanics and Applied

Mathematics. vol. II, part 4, pp 545-553.

[4] LAMB, H. (1932). Theoretical hydrodynamics.
6th edition. Cambridge University Press,
pp 410-412,

[5] SARPKAYA, T. and SHOAFF, R.L. An inviscid
model of the two dimensional vortex shedding for
transient and asymptotically-steady separaged flow
over a cylinder. 17th Aerospace Science Meeting,
New Orleans, La. January, 1979.

63



