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SUMMARY

analysed. The study is restricted to elastico-viscous liquids with short memories.
motion to be compatible at the interface, the

requiring the fluid and flexible boundary

Stability of elastico-viscous plane FPoiseuille flow with flexible boundaries is

By

eigen-value problem is posed and then solved by a graphical method. Sets of neutral sta-
bility curves are obtained for varicus values of flexible boundary and fluid elasticity

parameters.
parameters.

gl INTRODUCTION

Kramer(1960) reported substantial drag re-
duction in water for cylindrical bodies
covered with flexible bounderies. This
triggered considerable theoretical research
work by Benjamin(1960), Landahl(1962),
Kaplan(l9643, Gyorgyfalvy(1967), Babenko
and Eozlov(1972), Pathak and Chaturvedi
(1977) ani others,

Out of wvarious wviscous drag reducing
techniques, the use of flexible boundaries
needs lot of further detailed research
because of its possible practical appli-
cations in water borne and air borne
vehicles (Bushnell et.2l1.1976). The term
flexible boundaries implies a wide class
of rubber like elastic surfaces which
posses the property of interacting with
the flow system. A proper coupling between
the flow and the flexible boundary may
have significant stabilising and drag
reducing effects. Flexible boundary
research may also play a significant role
in bioengineering and analytical study

of biological flow systems which usually
have flexible boundaries.

Flows of fluids with memory are also
becoming increasingly important in

context of drag reducing properties of
very dilute solutions of high molecular
weight polymers., In view of the above

it would be interesting to study the
interaction of flexible boundary and
elastico-viscous fluid. In the present
paper, the authors investigate the
stability of elastico-viscous plane
Poiseuille flow with flexible bounda-

ries, In section 2 the elastico-viscous
stability equation, the flexible

boundary model, the associated boundary
conditions and solution of the resulting
eigen—Value problem are discussed,

Results which bring out the effect

of flexible .boundary parameters and

fluid elasticity are presented in section 3.
Finally, conclusions are given in section 4.
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The nature of influence on flow stability depends on the wvalues of these

2 THE FROBLEM AND ITS SOLUTION

It has been shown by Chun and Schwarz
(1968) and Walters(1962) that for the
second-order fluids and Walters's fluid

A' and B' with short memories, the
stability equation takes the following
form

(T-c)(od= ¢ ")+ ¢un + &L

U=c mr

= (&2 - 2" 2%+ oty

where U is the undisturbed veloecity in
x-direction, ¢ is the amplitude, a the
wave number, ¢ the wave velocity, R the
Reynolds' number, 1/S a small fluij
elasticity parameter and primes denote
differentiation with respect to y. For
a vanishing 1/S, (1) reduces to the
Orr-Sommerfeld equation,

(1)

The flow under consideration is the plane
Poiseuille flow for which U = 1 - y2, As
in the classical viscous problem, the
consideration is restricted to even
solution corresponding to antisymmetrie
disturbances which cause instability of
fluid motion.

The stability equation(l) has one relevant
even 'inviscid' solution VY j (Stuart,1954)
and one 'viscous' solution Wo(Fong and
Walters ,1965). These two basic solutions
must be appropriately combined to satisfy
the boundary conditions of the problem
under study.

2.1 TFlexible Boundary Model

The model of the flexible boundary to be
considered is a taut membrane supported
over a foam like elastic base. The mechani-
gal Eehaviour of this model is determined
Yy its mass per unit length m, 4 in, er
unit length dp, tension T and,spﬁggg %og-

stant Ko, The dynamic equatio
s 2 yn quation of such a
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where n is the boundary displacement in y
direction and pb is the pressure at the
boundary.

The flexible boundary undergoes 3isplace-
ments in response to travelling pressure
wave disturbances of the form

(3)

where pp is the amplitude oI pressure wave
disturbance. The travelling wave type di-
splacements of the flexible boundary can
be expressed in the form

py, = Py, exp[ ia (x - ct) ],

M= exp [ia (x-ct)],  (4)
4 =% exp Ela (£= ct):],
where § and % are the wziplitudes of dis-

placements from the me:n position of the
flexible boundary in y =nd x directions
respectively.

Using the accoustical zoncept of admittance
the normal and travelling wave admittance
of the flexible boundzry can be respecti-
vely expressed ¢s

v - _ 90/t _ igidec
3 1 SR i y
b Py (5)
Py

Defining the propagation velocity of }is-
turbances in membrane =25 cop = (i;{mgl 2,
the cut-off fregquency asaJS?Ko/m /i d
the wave propagation velocity for the
composite model as co =VTc§m + ug/az) and

using(3), the expressions(5) take the form

Yir w o ie ;
11 ma(cg - 02 - iCd.O/o:)

(6)
Y12 = 0-

2.2 Boundary Conditions
Boundary conditions at the flexible boun-
dary are obtained by satisfying the requi-
rement of compatibility of fluid ani
flexible boundary motion at the interface.
These after linearisation takes the form

A

"I’lb*A\'/gb:C"l- 2
i 7
Wp + AV, = -Tp1,

where A is a constant and subscript b indi-
cates the value at the mean position of the
flexible boundary.

Using (5), the equations (7) become

Ts .
e oy 2 o]
\Vlb + A\‘Vzb = ia ] (8)
' Rl Y4 ﬁﬁ
Wip * AV = T} 2,
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where B = cY;,+Ul ¥, ,(Benjamin,1960).
Elimination of A from (8) leads to
A
Yoo ) a1 [ Ty Pp/le-Vqy
21 Q_ ity 50 i A N
b ag [Vop(Spll 1-¥e--UiT; pp/iac-Vg
which can be written as

D(A ’?b) = E(azl yc’ Yll) =

|

(9)

For any given value of A and Y7, the com-

plex eguation (9) can be solved graphically
for ¥y, a and y,. Fong and Walters(1965)

have expressed the function D as
(Fr+iFi)1 +A(Gr+iGid,

D= (10)

where A= (a RUL)Z/3/s.

Values of Pr, Fj, Gpr and Gi are tabulated
for € ranging from -0.9 to 4.9, For a given
A, the real and imaginary parts of D(A,?b)
are plotted on a polar diagram. The
function E(a?2, ye, Y11) is then computed
with the helg of a comguter program and
plotted on the same polar diagram, For pre-
scribing Y13, the mass coefficient m,follo-
wing Landah] (1960), is assumed proportional
to a=2 for o< 0,8 and equal to a constant
value 2 ior o » 0.8. The intersection of
the two curves gave the aesired eieen
values §,, a and yo. Reynolds number R
is then calculated from the relation
Sy = (1-3,) (a RO/ (11)
Sets of neutral stability curves are obtai-

ned for variztions in flexible boundary and
fluid elasticity parameters,

3 DISCUSSION OF RESULTS

Typical neutral stability curves for A=
0.08 and their response to varistions in
flexible boundary parameters cy and dy is
illustrated in Figures 1 and 2. The dotted
curve corresponds to the rigid boundary
case and is given for the sake of compari-
son. From such neutral stability curves,
the critical Reynolds number Re for any

combination of A, ¢y and dy could be found
out.

Figure 3 depicts the effect of changes in
dp (keeping cq 0.75) on the stability of
flow for wvarious values of A. It can be

seen that Re increases with increase in 4
for all i,

Figure 4 shows the effeect of variations in
¢o (keeping d, = 0.025) on the flow stabi-
lity. It is found that for Newtonian fluid
increase in cp causes a continuous increase
in Re. For elastico-viscous fluids(A #0),
an increase in ¢, upto a certain value

( = 0.55 here) leads to increase in R, and

thereafter any further increase in Co
causes a decrease in R,.

Figure 5 illustrates explicity the combined
effect of A and d, (for ¢, = 0.75) on flow
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Figure 1 Neutral Stability Curves
for wvarious do
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Figure 2 Neutral Stability Curves
for various c,
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stability in comparison with rigid boun-
dary case., For rigid case, increase in A
causes a decrease in Rg, that is, fluid
elasticity destabilises the flow. This is
in conformity with the findings of Fong
and Walters(1965), For the flexible
boundary case, it can be seen that at
low wvalues of A the flow is destabilised
relative to rigid case while at higher
values of A the flow is relatively very
much stabilised for all values of dg.

Figure 6 shows similar trend of relative
flow stabilisation with increasing A for
different S, values.

d=0.025
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Figure 6 Effect of A and ¢, on
Bs
4 CONCLUSIONS

The critical Reynolds number Re in case
of elastico-viscous plene Poiseuille flow
is found to be substantially affected

by flexible boundary parameters cg and
do. A proper choice of ¢, and i, may
completely offset the destabilising
influence of fluid elasticity and lead

to substantial relative stabilisation

of flow in comparison to the correspon-
ding rigid case. Thus the overall influ-
ence on flow stability depends upon

the values of X, c, and do'
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