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SUMMARY A general criterion of stability for orifice plate surge tanks is developed by analytical inte-
gration of the equations of motion using the method of Krylov=Bogoliubov. Predicted maximum amplitude
aof oscillation is compared with experimental and numerical data.

! INEROBUCTTON of second order non linear differential equations

It is possible to improve the performance of a of mechanics and electricity ( Krylov-Bogoliubov
surge tank by fitting a restricting orifice at its 1943). In using this technique there is no need
entrance,The orifice increases the retardation of to introduce the linearizarion of orifice head
the flow in the tunnel in the case of a load rejec- loss , as done by Escande, Zicman and Zienkswicz.
tion and accelsrates the flow for a load acceptance. Thus it should provide a more realistic stability
The dimension of the orifice depends among other criterion than those obtained by these authors.
things on the allowable pressure at the junction 1t is found analytically that orifice surge tanks
of“tha“surde tank and-the tuntel and af the maxi= have much wider margins of stability than simple
mum value of ths pressure transmitted past the surge tanks, This prediction is compared with ths
surge tank into the tumnel, the coefficient of tran= results of "exact" numerical integratiocns of the
smission being inversely related to the size of the equations of motion, and with the only reported
orifice. If an orifice surge tank is considered at cass of experimental tests under the set of basic
the design stage of a hydropower station, then it operating conditions i) to iv).

is necessary to examing the effect of the orifice

on the stability of aoperation and to assess the 2 ANALYS 1S

influence of the restrictiocn on the damping of the
surge tank. Both problems, stability of operation
and damping have been previously studied for the
case of a simple surge tank, under a variety of
operational conditions., The major contributions

1-1 .= Consider the case of a surge tank isstalla-
tion as shown in Fig. 1 « The equaticns of motion

for this system are the equations of conservation

aof mass and momentum, which are for the tunnel

are due to Thoma (1911) for small oscillations, du i (qu el L ujy (1)
more recently by Jaeger (1943) and Ruus (13&3) dt L ) 2D

for large vscillations. In these studics a numbper Wi g e @ (2)
of basic premises were adoptazd, namely that : ; SE B Ay

i) The governor regulating ths discharge in the (1) and (2) are supplemented by the momentum equa-

penstock acts to keep the total pouwer constant.

B : : tion for the surge tank
ii; The governor is assumed to react instantaneous—

ly to load fluctuations, dv = ﬁ_(jL_ z) i EL VIV (3)
iii) The turbines have practically constant effi=- dt il <D

ciency. together with the relation expressing the pres-—
iv) The power plant is isolated from the grid. sure differential across the orifice

Although it is net possible to assume that these £ i ? 2

conditions are wholly met in practice, the anmalysis Jiffi = Ei? (‘%i} %}!l (4)

based on these assumptions has led to useful design
rules, namely Thaoma's criterion for the stability
of simple surge tanks under small oscillations.
Only a limited amount of work has been devoted to
the problem of stability of orifice surge tanks,
The most important contributions have been those of
Escande (1952),Zicman (1953) and Zienkewicz (1956).
They solved the problem of integrating the equa-
tions of motion by further assuming that the pres=—
sure differential across the orifice is proportio-
nal to the first power of the velocity, thus redu-
cing the equation of motion to a linear second S i B {H°_jo§ (6)
order differential squation. It is possible to solve
the problem of stability without this additional
simplifying assumption by attempting a purely nume-
rical solution, as advocated by Mosonyi (1964) and

and by the discharge equation obtainsd from the
condition of governing at constant power

@ S_'i_QoHﬂ-_ © o Ha = QoHn (5)
S H H Hy + P/
1=2 .= Change of Variables : As we are interestad

in the stability of operation of the system around
the steady state situation, the vertical origin is
moved to the steady state water lsvel, and a nesw
vertical ordinate is defined by :

Combining now (4) and (3) and introducing the ex-
pression for Q from (5) into the continuity equa-—
tion (2) , it is found that :

- % / 2 3
Forster (1962). The numerical solution has the dis-— % :(b*{ H°“jo))[i*",_l%v£ +i§5 \%Xi{[ +gﬂ~i’~ y—gi'—ﬂ (7)
advantage that no general criterion of stability and 3 b0 o4
can be deduced from particular solutions. \/ A5 U A Do Hin
In this paper the problems of stability and damping T OUE T A ¥ :ﬁgﬁq‘ (8)

of the orifice surge tank are solved by the approxi- 1=3
mate analytical technique of Krylov=Bogoliubov, a
technigue developed in the 1930's for the solution

«= Introduction of Dimensionless Variables: It
is conveniant to rewrite the system of equations
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(1),(7) and (8) in a non dimensional basis, using as
reference guantities:

Velocity Scale U = Steady State Tunnel Velocity

Time Scale T = (LAs/gA)* Y
Length Scale Z = Us ( LA/ﬂASjZ

The following dimensionless variables are thus defined

e

& il =H
Hn

W= Y T 5

Sasely, e N,
UD’U_JDA/AS ’YzFZ; i

It can be shown that under this scaling, the magnitu-

de of the surge tank's inertia and frictional terms
in (7) is very small, so that (7) can be written as:

SPPREE — Ho-yo Vi vl (9)
T2 (71 Zx ) : 02

AN e
where: Y (Z\:) T 297« (10)

The dimensionless discharge g is now written in terms
of the gross head Hg and the new dimensionless variab-

les as
Zx

A

it can be noticed from (9) and (11) that the charac=

teristics of the system are defined in terms of three

length parameters: Z ,H ,y .They may be combined
into two dimensionless coefficients :

o= it—i% AR %‘é (12a,b)
Typical values for these coefficients are, foreol a

range from 0 to 0.12,for @ a range from .15 to .5 .
Introducing these definitions into the equations of

motion , one obtains :
4 (1= Sm =Yy dad
go g (L)% 201l e3)
= odn|d
dg. - w-(LeB (7 R d) (a)
1=4 .= Initial conditions of the system : For the

study of the stability of the system it is assumed
that for t£ 0 the system is under steady state con-
ditions, that is, has values of

A=4

/S (15)
du _ dn _
at 2 :fl‘ &
At t=0 a perturbation is introduced, consisting in
a change in the rated power to a fraction ¢JQF the
initial power, This variation is described by 3
Power(T) = RJWbrCD) £~i* (1—q33§(331 (16)

where{(Z)is an arbitrary function of time, but such
that{(©)=0 and{(Z2z) =1 . Here T, is the time assigned
for the change in load .

1=5 .= The Stability Problem : In order to test the
stability of the system, a valus of{# L is intro-
duced in (16), together with an appropriate func-
tion $(T) . The solution of the system (13) and (14)
with the initial conditions (15) and (16) will ans-
wer the guestions of the magnitude of u and with
time and whether these values return to steady sta-

te levels under the new load regime ,There is no dif-
ficulty in obtaining a numerical solution of the sys=—

tem of equations, which will be used as a check for
the analytical solution herein discussed .

2-1 .= Analytical Solution of the Equations of Motion
Although no exact solution to the equations of motion

is presently available, it is possible to derive ex=—
pressions for the amplitude of the oscillation by
means of the method of Krylov—Bogoliubov (K-B). The

systam of equations (13) and (14) is first reduced to

a standard form by eliminating u and sxpanding the
fraction in (14), resulting in :

2 k2 s o £l L Pkt ;
Sttt yeaal -y
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10 2pbeday sgr +
E (-4%)

w
-

A

(1= &Y az B
(17)
an equation that may be written as :
2 2 ¥ REN _ A2
Ci_g%Jr of +F(Y2a’}-“])=%‘-(44>) (18)
the functinnFYwhﬁ,ﬁi) standingLFor the tarms
within curly brackets in (17). The K-B method
assumes a solution of the type:
M = alz) sin (wz+ 5(33)+% (=¢°) (19a)

together with:
Ci% = Qz)w cos(WwT * 5(1}): aaomszi) (19b)
d

az) is a time dependent amplitude and 5(c)is a

time depemdent phase angle. These terms can be
approximated by 3

r21
dagmiz, el i Flasing, awcosy ycosw d
dz T Zmw J'szgq L B (20)
3 e sin, awcos ) sinp d
gs moo rlasng L (21)

The integration indicated in (20) is now carried
out, introducing the assumed form for 7 and Y

into the definition of F(m,M,M ) , at the same time
respecting the assumption inherent in the K-B
method that both @ and & remain constant within
the integral sign .The integrals of all terms of
order below (ﬁ/a—ddf are equal to zero, with the
exception of those noted below @

da __&(24_8 \g-4&06d. 30508/ _ 3 2
daT 2( A I‘-_S() 3T 4“-43‘(‘3 1‘..::)3{22)

This equation defines the amplitude of the oscil-—
lation and will be considered for these two cases:

2-2 .= The case of the Simple Surge Tank : In this
case v, =0 and (22) reduces to:
o=l Zebs B X 23
4z 2 ( &) =) (23)

s 33
which integrates to : @& =4, cxP\'%L-@Z = r_';)z} (24)
(24) shows that ths oscillation will be damped for

7 - oa ¢ provided that the term
il - 3
B ==

is positivae.
dition that:

This is equivalent to stating the con-

ffn > Plibn

well known Thoma condition,

(25)
which is the

2=3 .= The case of the Orifice Surge Tank : It may
be noticed from squation (22) that as long as €
remains positive, the RHS of (22) is negative, for
the typical values of = and B quoted before,thus
the amplitude of the oscillation decays to zero

for long times. The decay factor contains now a
term proportional to the orifice head loss coef-
ficient 7, , which accelerates the damping as compa=
red with the simple surgs tank. As was intuitively
expected ( and heuristically stated by Gardsl(1957)
this additional damping disappears for very small
oscillations. If the surge tank cross section is
smaller than the limit given by the Thoma condition
(25), € becomes negative and the amplitude of the
oscillation grows until it reaches a value squal

to the positive root of the guadratic equation for=
med by setting %% =0 in (22). This root is 3

T e
ay = (Mfea)((1= 4 AR ) +1)

(26a)

also @



where

Aasi=i(Er - 8. )
3
Ai -'?-ﬁ LUAT},

(26b)
3 Bre ey Ejon
Aumoge g o= )
The roots of the equation remain real provided that
4 A /AT €1
equivalent to the gmeFE}ciszf 1o being greater than :
2ok

o= 821 & (E=)F - &) & -&) @
fz this value of 95 is too small to be found in any
practical situation, only real roots will be consid-
ered., An approximate expression for the positive
root in equation (22) may be deduced by developing
in series the square root in (26) and retaining on-—

'ly the first terms, a procedure which leads to :

2 3

L L T ,,JL)"

1 w T
As the maximum amplitude of the oscillation is prop=
ortional to the factor ¢ , it follows that the main-
tained amplitude a4 is larger for small load changes
than for larger ones, a somewhat surprising conclusion.
In summary, the stability criteria derived from the
analytical integration show that , if As > Ama
henceforth called the Thoma area, then the system
is stable. If As< Aty , butts>Ye in (27), then a
tends to a, 4 as defined in (28), the oscillations
being maintained at this amplitude. Finally, if

As £ Atu and To <Yc the system is unstable .
If maintained oscillations of a certain amplitude are
not ruled out by design considerations, then an ori=-
fice tank system with a cross section well below
that given by Thema's criterion is feasible . The
magnitude of the maximum amplitude may be reduced by
adjustments to the parameter To

e (28)

q"l

2=4 .=Damping of the Oscillatiom: The magnitude of
the amplitude as a function of time follows from the
integration of the differential equation (22):

A—J-S

a T 0 b e Mty

1+Aa + Aza® \a-a; )
where A, A,, Az are defined in (26b), C, is a constant
of integration and A is the discriminant of (26a).
This solution is restricted to the practical case

A SO .Becauss (29) is linear in € , it is pos-
sible to find the values of Q. for a given value of

T .To compute the constant of integration, it can

be shown that, to order 33 , the initial amplitude
Q.. and the initial phase angle J, are the solutions
of the system

= exp(2As (Z+C))  (29)

\D~5

- 4{1-d)¢
Fakils iR )

<,
Qo €OS €5 =

it (30)

2
5 (+-4)
3=1 .= Verification of the Analytical Sclution :The
analytical solution was verifisd by means of a nume=—
rical integration of the equations (13) and (14).
Then both numerical and analytical methods were com=—
pared with the experimental evidence provided by
a surge tank model supplised with a constant pouwsr
discharge control.

. v
Srmar T R

3=2 .= Numerical Verification: The equations of
motion were integrated by means of a third order
Adams-Bashforth predictor corrector method. The per—
turbation consisted in a sudden load rejection of %
of the initial load, from a power coefficient ¢ =1
to =,75 , The new steady state condition consis-
ted in a value of u as given by the useful root of

the cubics
(=Y o e cP(f-oq
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derived from the constant power equation (S),to=
gether with the corresponding value of 7 equal tos
7 o S V)
This process of numerical verification was applied
to the three preliminary conclusions drawn in 2=3.
The first, that the amplitude of the oscillation
is damped if As> Arwwas checked by reference to the
model tests of Mc Caig and Jonker (1959). In the
model tests, the stability of operation for seve-—
ral design alternatives for the surge tank of ths
Bersimis N 1 power plant in Canada was analysed,
Some of the proposed designs incorporated an orif-
ice control, some were simple surge tanks. The ex-—
perimental data is shown in Fig. 2, which exhi=
bits the variation of the maintained amplitude am/Z4
of the oscillation as a function of the ratio As/Av.
The experimental trend is in reasonable agreemsnt
with both the numerical and analytical predictions
which are in themselves quite similar .The two
curves shown in Fig. 2 assume instantansous rejec-—
tion of 5 and 25 % of the initual load .Both exper—
imental and analytical results share the rapid
ipcrease in the amplitude of the oscillation which
regsults when the ratio ASﬁQTu descends below unity.

3=3 o= Numerical Verification for Different Values
of 7, & As the example analysed in 3=2 had a value
of v, closs to unity, a test with a wider range of
values of this parameter was conceived, in which
Yo adopted values between .1 and 3, whilst ot
ranged betwsen .02 and .12 . The value of B was
then modified until the system entered into a state
of maintained oscillations of constant amplitude.
The numerical results are compared with the analy-
tical predictions in Table I, This table contains
also the calculated values for the critical T
in (27). In all tested cases, instability resulted
when To descended below the critical value.The com-—
parison between numerical and analytical results
shows that the agreement is better when the value
of the parameter && is low, near the lower limit of
.01 . This is in agreement with the basic premise
of the K=B method, which assumes that the non lin-
ear terms( in this case the frictional losses) are
modified by a coefficient small with respect to
unity. But even in cases of the larger values for
ol the analytical results give an upper bound
that may be useful in the initial specification for
governor design .

3=4 ,= Comparison between the present results and
those of earlier investigators: As mentioned in
the Introduction, Escands ,Zicman and Zienkewicz
considered only the case of small oscillation with
linear losses through the orifice plate. On this
basis Escande obtained as the magnitude of the
maintained oscillation (for & 21):

G g e el (31)

Bro (1= 3ut)

Zicman proposed a very complex expression, which,
for small o\ reduces to:

2.55 (B%-2x(1-a)

QA = (32)
5 (Pro(t=3+) +at(4-=})
The present results (18) , are seen to be quite
close to those of Escande, whanfp 21 , In that
case (18) reduces to:
2 = o
B = Wi 2r Bl Ba(i=a) ( =i (33)
BTe (1-3) 1=34

Zicman's expression gives values about twice as lar-
ge as Escande's or the present ones.

Finally, it may be worth quoting the very extensive
numerical experiments of Forster, who found that
from the point of visw of stability, it is small
load changes around rated power that are most dan=
gerous, in concordance with the statement in 2-3.



3 CONCLUS IONS

The analytical solution of the equations of motion
of the orifice surgs tank by the method of Krylov-
Bogoliubov indicates that an orifice surge tank

will behave stably when its area is larger than the
Thoma area, that for cross sectional areas below the
Thoma area, the amplitude of the oscillation upon

a load change does not grow indefinitely, but has

an uppsr limit which depends inversely on the para-
meter T, . It appears that there is a minimum ac-
ceptable value of the parameter Yo which will assure
stable operation with areas less than the Thoma
area,This has been labelled the critical value of To,
The relation betwsen the amplitude of the oscillation
and time has been obtained as a rather complex ex=—
ponential expression.

The stability predictions were verified against a
numerical solution of the same squations, for a wi-
de range of valuss of the paramsters < and To .
Both methods are in reasonable agreement, being spe-=
cially close for the case of low values of & ,

that is for systems with low frictional losses .
Numerical and analytical predictions were in turn
compared with the experiments of Mac Caig and Jonksr
on a model of the Bersimis N 1 power plant.

The empirical data substantiates the theoretical
predictions.
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NOMENCLATURE &

All the geometrical terms are defined in Fig 1.

In addition:

U, = mean velocity in tunnel at rated powsr

p = pressure at surge tank junction, below orifice

p, = pressure immediately above orifice

V = vertical velocity in surge tank

@ = penstock discharge

G = ditto at rated power

fo = effactive friction loss coefficient, including
entrance and exit losses

fs = surge tank friction coefficient

y = friction losses at rated powsr

TABLE |

COMPARISON OF ANALYTICAL AND NUMERICAL VALUES
FOR THE AMPLITUDE OF THE MAINTAINED OSCILLATION

Orm Qvm
T Te ol (3 Analytical Numerical
| .006 (.03 |.256 |.279 231
o1 .008 |,04 |,292 |,.293 235
il 015 (05 o324 |.323 «237
e | .018 (.07 |.378 |.382 «241
o1 039 |10 |.446 |.571 «239
1.0-- [.057 [.01 «265 |.175 + 167
1eD. 50073 77|02 < |6 310-, 175 163
1.0 [.112 |04 |.381 .183 163
1.0 [.158 (.06 |.437 |.196 164
1.0 [.2B8 [.,10 |.526 |.239 +170
2.0 [.163 |[,01 «350 |.136 126
.0 [42B7 |,05 |.470 |.142 «120
.0 [.812 [,03 [.580 |.166 « 134
o0+ (88T {505 |,606 |+166 .128

Figure 1 Surge Tank and System Geometry
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Figure 2 Comparison of theoretical data with
experiments by McCaig and Jonker
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