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SUMMARY There are many problems in viscous fluid dynamics where a prime object is to find the shape of the
free-surface. Numerical work already done by the authors uses the classical Galerkin-based finite-element
method. After assuming a boundary shape the problem is solved, the boundary is checked to see if it
satisfies all the necessary free-surface boundary conditions, and if not, the boundary shape is updated
until convergence is obtained. During this process the entire internal fields for velocity and pressure
are computed at each interation, even though they are not of interest. In the present paper we explore the
use of the boundary-element method. Here only the surface values of stress and velocity are dealt with at
each interation and after the final free-surface shape has been determined, the fields inside the fluid can
be computed if needed. Some simple exact solutions are first solved and then the problem of extrusion is
tackled. We conclude that the method is convenient for flow problems at low Reynolds numbers.

1 INTRODUCTION There is a singularity here in the boundary con-
i ditions, which change from no-slip to zero stress,
In many problems of viscous fluid dynamics, a major and this leads to very high rates of change of
aim is to find the shape of a free-surface. We veloecity and stress in the fluid nearby. Success-
instance problems of jets leaving a nozzle, extru- ful representation of the flow near the singularity
sion of polymer from dies and melt-spinning pro- requires that the nearby elements be small, and
cesses, all of which are steady-state flows with geometrical constraints then require a relatively
free-surfaces of complex shape. find grid throughout the region. The resulting
large number of nodes makes the problem a large one
Numerical methods for computing free-surface flows in terms of computing time and space.
for Newtonian fluids are well established (Reddy
and Tanner, 1978) and considerable work has also The use of fine grids, necessary for the calcula-
been done with non-Newtonian fluids. As the fluid tion, produces a great deal of information about
is moved further from Newtonian behaviour these the flow which is not necessary, as the main aim of
models begin to break down, either by the solutions the calculation is to predict the actual shape of
becoming inaccurate or by numerical instability. the jet and the pressure loss in the nozzle. A
We are therefore exploring progressively more boundary method would therefore be attractive. In
complex viscoelastic fluid models, the principal of this type of method, the problem is transformed
which is the convected Maxwell fluid (Bird et al, from one over a region to a corresponding problem
1977). on the boundary. As the boundary has one fewer
dimensions than the region it encloses, the number
The flows mentioned above, and some results to be of nodes required for equivalent accuracy should be
given later, were obtained using a Finite Element greatly reduced.
algorithm. The Finite Element Method has the
advantage for free-surface flows that it is easily We will show that free-surface problems can be
adapted to boundary shapes which are complex and successfully transformed to boundary problems, and
change at each iteration of the calculation, and then formed in terms of discrete variables, but we
indeed the FEM has proved a very successful will first describe the non-Newtonian fluid, and
technique for general fluid dynamics. the FEM algorithm we have been using, and give some
of our results, so as to provide a comparison for
With non-Newtonian jets, and particularly with the the Boundary Element Method.
Maxwell fluid, we have found the main difficulty in
the calculation to be associated with the singula- 2 FREE-SURFACE VISCOUS FLOWS

rity at the lip.
The non-Newtonian fluid model we have investigated
is the Maxwell fluid, a model with a single

_S*FES§ exponential relaxation process. The stresses in a
singularity & Maxwell fluid have been calculated by integrating
NO SLIP : ZERO STRES over the history of each fluid particle (Caswell et
NN NN NN =) al, 1978). We have preferred to express the con-
B s%?ggs stitutive equation in the form of a global
= =) differential equation (Bird et al, 1977)
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Figure 1 Typical grid for jet problem where here and elsewhere we use Einstein's summation
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convention. The Ti4 are the deviatoric stresses,
so that the total stress is
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and the v; are the velocity components. The
Newtonian viscosity is n and A is a parameter
proportional to the relaxation time.

The equation of motion is
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The deviatoric stresses can be divided into
Newtonian and non-Newtonian parts:
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The equation of motion can then be recast:
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Using the Galerkin method and Green's theorem, we
can rewrite (6) as
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vanishes except on the boundary of the region,
although the corresponding term for the non-
Newtonian part of the deviatoric stress does not
vanish, due to the lack of continuity in the stress
fields used. Equation (7) can therefore be written
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where the tj are tractions acting on the surface s
of the region. The terms on the left-hand side of
(8) are a standard Newtonian finite element
algorithm.

The solution procedure used is to alternately
calculate the velocity-pressure field and the
deviatoric stresses. A Newtonian velocity field is
used to begin the process and the parameter A is
incremented until the desired value is reached.
can be shown that the velocity fields for small

It

values of )\ are very similar to the Newtonian
values for plane flow.

The deviatoric stresses are calculated with a FEM
using the same element grid and many subroutines

in common with the velocity-pressure calculation.
The boundary conditions applied are values of the
deviatoric stresses on the upstream boundary.

These can be easily calculated if the corresponding
velocity condition is Poiseuille flow.

On the free-surface a zero-stress boundary con-
dition is applied in the velocity-pressure calcula-
tion, and the surface is them moved to obtain zero
normal velocity.

3 RESULTS FROM THE FINITE ELEMENT METHOD

The algorithm described above was used to simulate
plane jet flow for a Newtonian fluid and a Maxwell
fluid with Deborah number 0.25. The element grid
used was that shown in Figure 1 which has 594
degrees of freedom. The boundary conditions
imposed were fully developed Poiseuille flow up-
stream, no slip on the solid boundary, no stress on
the free-surface and the downstream boundary and
symmetry conditions on the central plane. The
appropriate deviatoric stresses for Poiseuille flow
were imposed upstream for the stress calculation.
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Figure 2 Deviatoric tensile stress for Newtonian
fluid.
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Figure 3 Deviatoric tensile stress for Maxwell
fluid, Deb = Ay = 0.25
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In Figures 2 and 3 the deviatoric stress parallel
to the flow for Newtonian and Maxwell cases are
shown. The concentration of the changes in tensile
stress in the region near the slip-no slip junction
for the Maxwell fluid is clearly shown. The
centreline pressure, Figure 4, is seen in the
Maxwell fluid to be parallel to but slightly dis-
placed from the Newtonian pressure curve.

The expansion ratios were 1.19 in the case of the
Newtonian jet and 1.16 with a Deborah number of
0.25. This small reduction in the jet size at low
Deborah numbers has been encountered with a second-
order fluid model (Reddy and Tanner, 1978) and can
be shown to be expected theoretically, although at
larger values of the Deborah number the jet expands
from the Newtonian shape. Although this method of
calculation works, it is expensive, and we now
proceed to discuss the alternative, boundary-element
method.
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Figure 4 Centreline pressure p/n%

4 RECIPROCAL THEOREM FOR INCOMPRESSIBLE
VISCOUS FLOWS

Because of the interest in finding the boundary
configuration at various times, and the comparative
lack of interest in the internal state of the body
in the extrusion problems discussed above, we have
begun to explore the possibility of using the so-
called boundary-element procedure. Essentially,
the technique is derived from reciprocal theorems
familiar in linear elasticity, combined with a
knowledge of the relevant Green's function. The
effective adaptation of these methods for computer
use in elasticity seems to be due to Rizzo (1967)
and Cruse (Cruse and Rizzo, 1968). Here we begin
by discussing viscous incompressible flows; the
problem follows closely the discussion for linear
elasticity (Brebbia, 1978).

The equations of motion given above in Equation
(3), and the conservation of mass equation takes
the form 3v_/9x, = 0. Suppose 0j; are the stresses
in the fluid, p'is the fluid denmsity, f; and aj
the body forces (per unit mass) and acceleration
components respectively, and vj are the velocity
components; %5 denotes the position in the fluid.

We consider an arbitrary set of fields V?, p*, ozj.
We multiply the equation of motion and the mass
conservation equation by vj, and p~ respectively
and integrate over the body; this is the familiar
Galerkin procedure already used in the finite
element approach, but we also add on a surface term
over the part S; of the surface (Figure 5) where
the velocities are given. Thus we have
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where t; is the traction vector oijn- formed from
the starred stress tensor and the ou%ward unit
normal vector p, and vi are the given boundary
conditions. Any solution (o,., p, v,) that satis-
fies the equations of motion} the mass conservation
equation and the boundary condition Vi = vy on 8;
will make (9; vanish,*and hence (9) is true for
arbitrary (Gij, Py Vi)-

Now consider the following expression denoted by
I(%, 0) where
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Figure 5 Boundary condition definitions.

By using Green's theorem we can show that for a
Newtonian fluid there is a reciprocal theorem

I(0,%) = I(%,0). (11)
This reciprocal theorem can be used to replace some

of the terms in (9), finding, when both v* and v,
5 : : o i
are incompressible fields,
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We can combine the second and last terms to read
= fvitids, understanding that v4 = v; on Sj.

We shall also suppose in this paper that f; and ay
are known; for the latter this implies an itera-
tion scheme that is not expected to converge for
large Reynolds numbers (Gartling et al, 1977). For
the examples given here, both f; and p are assumed
zero, so we have creeping flow under no body forces.
We will also restrict ourselves to plane flows.

a THE BOUNDARY ELEMENT METHOD

We now assume that the (%)-fields are produced by a
unit force in the f=direction, The plane flow
solutions for the t ) and vk( ) are well-known
(Brebbia, 1978)
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Consider the body of fluid in Figure 6. Suppose the
boundary is discretized into linear "elements" ab,
bc, cd, etc. Suppose at the centre of ab we have
node 1. Suppose we assume a (%)-field which con-
sists of a unit force in the x]—-direction applied at
node 1. Then we have (Brebbia, 1978), from (14)

0= Ly = j’vkt;ds + fv:_tkds (15)
8 s

where V; and t; are known. If we now assume that
the (0)-field is uniform over each segment, so that
we may speak of v; \m), vz(m), tl(m) and tz(m) as the
uniform components on the segment containing the mth
node, then (15) becomes a linear equation

105



%3
Figure 6 Boundary elements
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connecting 2N components of velocity and 2N com-
ponents of traction. Similarly one can apply a
unit force in the xp-direction at node 1, genera-
ting a second equation, and so on for all nodes,
finally generating 2N equations. There are 2N
v-components and 2N t-components, but only a total
of 2N unknowns. Thus one can solve a set of linear
equations for all boundary unknowns. To obtain
values in the interior, one places a point force
where needed as the (*)-field, and uses (14) again,
thus producing the needed value of v; a slightly
different field will produce the tractions and
stresses. Thus results at all points of the body
can be found.

6 AN EXAMPLE

We exhibit solutions for a creeping Newtonian film
extrusion. This problem has previously been solved
using the finite element method (FEM) by Reddy and
Tanner (1978) and we shall compare the solutions.
The problem is shown in Figure 1. The object is to
find the free-surface shape by iteration. Results
for the velocities and stresses found by FEM and
boundary element methods are compared in Figure 7.
The agreement between the two methods of calcula-
tion is seen to be excellent in that the stress
singularity near the exit lip is represented well;
this is the most difficult feature to capture
numerically. The time difference between the FEM
and the present program is. striking: using 24
elements (343 unknowns) the FEM program took 80
secs. per iteration; the boundary method (18 nodes
or elements and 36 unknowns) took 4.4 secs. on the
updated version of the same CDC Cyber 72 machine.
Thus, allowing for increased machine speed, the
boundary method is roughly ten times quicker.

7 CONCLUSION

We have shown that boundary-element methods can be
applied to free-surface problems to generate
accurate solutions at a cost less by an order of
magnitude than the corresponding finite element
solution.
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Figure 7 Boundary Element Solutions
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