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SUMMARY The application of a magnetic field to a layer of ionized fluid heated from below has the two-
fold effect of inhibiting the onset of dynamic convection and instigating the occurrence of finite
amplitude overstability. The transient nonlinear flow equations, which have been obtained by an averaging
over the convection cells, are solved using the spectral method employing the trigonometric funetions.

A description of the method is given and graphs are presented depicting the variations of the dependent
variables. The results indicate a rapid growth of the overstable oscillations with increasing Rayleigh
number, when close to the marginal value.

1 INTRODUCTION 2 NOTATION

In magnetohydrodynamics it is found that the

5 i " . o x,y,% : Cartesian coordinate system
magnetic field imparts a certain rigidity to the

fluid and yet also imparts certain properties of t : independent variable, time.
elasticity which enable %t to transmit disturbances u : velocity of the fluid = (u,7v,w).
by new waves of propagation. -
p density.
This paper @eal§ with the effects ?f Fhe appl;cation H : magnetic field intensity.
of a magnetie field to a layer of ionized fluid =~
thermally stratified, that is one in which there is p¥ : permeability of the medium to the magnetic
a temperature gradient imposed across the fluid. field.

The imposition of a magnetic field will cause a
suppression of cellular convection and perhaps the
introduction of finite amplitude overstability.

n : resistivity of the medium to current
transmission.

An ionized fluid in the form of a layer of thickness u : kinematic viscosity.
d and of infinite horizontal extent is heated from ¢ : force potential.
below and & magnetic field is imposed. It is known
experimentally that such a physical phenomena AT : + ?
: temper
produces a tesselation of cells and it is on this perature difference across the layer.
physical basis that the imposition of "averaging" T : temperature (asbsolute).

these periodic cells over the horizontal x-y plane
has been taken. There is a large amount of reason-
ably straightforward vector calculus inveolved, ¢y : specific heat at constant volume.
details of which may be found in Van der Borght
[l97h], Mann [1974], with furthea general fundamen-
tals elucidated in Roberts [1966]. The resultant . . . ..
equations are simply quoted in this mathematical K : thermal diffusion coefficlent = pe
model, which assumes the Boussinesq approximation.

a : coefficient of thermal expansion.

Kk : thermometric diffusion coefficient.

v
p : pressure in the fluid.

The study is confined to one of free boundary

conditions in which the velocity and temperature B = 4

perturbations vanish at the top and bottom bound- dz

aries but the mean temperature at each boundary is - .

o ey d : thickness of convection layer.
k

: horizontal wavenumber, giving the horizontal
Local Analysis, or the Hurwitz Criterion (Mann extent of the convection cells.

[1974]), give the marginal stability regions for
the various modes of instability. This analysis
illustrated that the imposition of the magnetic . ; gp o AT 3
field suppresses cellular convection so that it R : Rayleigh number = &2 Py -
occurs at a higher Rayleigh number but introduces e o
finite-amplitude overstability at a Rayleigh number Q : Chandrasekhar number = " H8 a4
which is lower than that of the cellular convection brn oy
but higher than that at which cellular convection

would occur without the imposition of the magnetic o : Prandtl number = ﬁ%
field.

a : non-dimensional value of k.

T : magnetic Prand = I
The spectral method is used to solve the nonlinear e K
system of partial differential equations enabling H -
an accurate solution to be made of the approximating

equations.

the non-dimensional perturbation from the
constant impressed magnetic field intensity.
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F : temperature fluctuations about the average
in an x-y plane.

g : gravitational acceleration, assumed constant.

3 MATHEMATICAL MODEL

The basic equations for conservation of mass,
momentum and energy together with a combination of
Maxwell's eguations and the generalised Ohm's law
may be written as follows where p*¥ is constant.

)
o+ V.lou) = 0 (1)
3T
P ey gp ¥ P C, u.VT + pV.u - KV2T = 0 (2)
au

*
= o
—_— = + + — o
T D S ST e (v xH)

pl:vzg + %V (V.l_..l)] =0 (3)

9H

ﬁ—curl(uxﬁ}+ncurl curl H =0 (L)

The variational principle of Prigogine and
Glansdorff [196L, 1965] has been applied together
with an 'Averaging' over the cells by Van der Borght
[1974]. With the assumption that the convection
cells are of either square or rectangular planform,
and with the Boussinesq approximation, the system,
after non-dimensionalization reduces to

2T
=t = DD < D(VE) (5)
%% = (D2 - a2)F - WDT (6)

Q|

(B2'= az}%% = (D2 - a2)2y - Ra?F + 7QD(D2 - 22)H
(1)

o (D% - a2)H + DW (8)
ot
A detailed analysis of this is given in Mann [1974]
and symbols are defined in the notation section.

The non-dimensionalized layer of fluid is of depth

unity and the non-dimensionalization has introduced
the flow "number", Rayleigh, Chandrasekhar, Prandtl
and magnetic- Prandtl.

Fadl: Boundary Conditions

It is assumed:

(a) +that there is no overshooting of the convected
fluid in the layer

U W= et s 00 (9)

(b) that the two surfaces are kept at constant
temperature, that is, the boundaries are
conducting boundaries in which the boundaries
conduct the fluctuations out of the flow
faster than the layer itself does

F =07 at 2 =0,1 (10)

(e¢) +that the layer of fluid is insulated against
magnetic field perturbations from the
adjoining medium and so have the condition

DH=0 on z=0,1 (11)

A typical current-free adjoining medium is a vacuum
and the corresponding boundary is a free boundary.
Across such a boundary the tangential stresses are
continuous. Since the above conditions show that
the magnetic part of the tangential stress is
continuous across a free boundary, and moreover
there are no viscous stresses outside the fluid, the
tangential viscous stresses must vanish on free
surfaces, resulting in

DZW = 0 on =z =0,1 (12)

The steady-state non-dimensional temperatures of the
free surfaces are

T=0 on z =20
1 (13)

T=-1lon =z

Van der Borght [1974] reduced eguations (5)-(8) to a
three equation system independent of H and then
solved using a one-mode approximation. It can be
shown (MANN [197h4]) that the three equation system
of Van der Borght is equivalent to the use of
equations (5)-(8) together with an explicit boundary
condition on H of DH = 0 at z = 0,1

3.2 Parameter Values

For point of easy comparison with the one-mode model
of Van Der Borght [1974] the major part of the ana-
lysis will be undertaken with the following values
of the parameters

- P ™
g = 1
w0
Q = 10° (1h)

and varying values of R, starting from the linear
value.

A linear analysis similar to that in Chandrasekhar
[1961], to determine the region of flow can produce,
for these conditions, dynamic convection at R = 1.97
106 and overstable oscillations at R = 1.09508 105
Full details in Mann [197L4]

L SPECTRAL METHOD

The Fourier-trigonometric approximations for the
dependent variables are chosen to be

n
W= .Z W, ,(t)sin(2i - 1)z
i=1
n
F = .E sz_l(t}51n(23 - 1)nz
j=1
n
T= -2+ ) Cpglt)sinemiz
=1
n
H = kzl H, ,(t)eos(2k - 1)z (15)

It can be readily verified that these satisfy the
boundary conditions. The form of T is chosen so as
to closely approximate the expected profile of the
temperature distribution in the unsteady state

e.g. the variations occur asymmetrically about the
steady-state profile.



Substitution of (15) into the transient nonlinear
system of partial differential equations (5)-(8)
results in the following, where ' denotes the deri-
vative with respect to time, t

(5) becomes

z Ci sin2mlz = - Ln2 z C£ 22 sinonlz

W (2i-1)7 cos(2i-1)wz L

e 5 151n(2j—1)ﬂz

1
]
e

W

Zi_lsin(Ei—l)wz sz_l(Ej—l)w cos(23j-1)7z

(16)

I
e~
Cn~1

To extract the z-dependence, a Galerkin approximation
using the orthogonality of the circular functions,

is employed. Multiplication by sin 2mmz and inte-
gration over z for z e [0,1] reduces (16) to a

system of ordinary differential equations.

Similar approximations are carried out on egquations

(6)-(8).

So, for varicus M= 1,....n where n is the order of
the highest harmonic, the resultant system of
ordinary differential equations describing the
problem may, with some minor modifications, be
summarized as follows

(Pl 232 £ i
ct bn2M2c, - 2n ; § W, Fpy_ q[(2T-1)AT(T,5,1)
+ (23-1)AJ(I,7,M)] (20)
1 = 2(oy_7)2 2
Bl = Doy T AELiot et e i,
w5 il ¥ Wy g Cp J AK(I,T,M) (21)
T .
1 W 2 I B 7 2
His o v [na(2M=1)2 4. af ] + (Mol o
(22)
Ra?F
' 2= ) o 2M-1
You-1 g {wzm—lt(EM ks S A
+ TQ(eM-1)w HZM_l}
(23)
where
1
AT(I,J,M) = J cos(2T-1)mz sin(2J-1)wz sin 27Mz dz
0 (2k)
1
AT(I,T,M) = J sin(2I-1)mz cos(2J-1)7z sin 21Mz dz
0 (25)
1
AK(I,J,M) = J sin(2I-1)wz cos 2nJz sin(2M-1)7z dz

0 (26)

In the evaluation of the integrals for AT, AJ and AK
as in (24)-(26), due to the orthogonality of the
trigonometric functions only certain combinations of
the I, J, M will render these integrals non-zero.

The integrals can be evaluated analytically and
expressed as constants for various combinations of I,
J, M.

Because these variables, I, J, M, are intrinsically
limited to positive integers the selection is even
more limited, with the result as follows
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AT(T,I,M)'= 0.25i¢ M=I +J -1 or M=J-1I
L@LES M E LT

AT(I, I M).= 0.25 it M=T+J -1 or M=T -7
~0.25 48 M =T 5T

AK(I,J,M) = 0.25if M=T1+ J or: M=T1 =J
-0.25 if M=J -I+ 1

(27)

A Runge-Kutta-Gill numerical integration of this
system was carried out. The choice of M Fourier
terms for each dependent variable resulted in there
being a system of 4 M nonlinear ordinary differen-—
tial eguations to integrate. From early runs of
the program it was found that only the first two
terms of the Fourier series for W and H were
significant while the higher harmonies of F and T
retained their importance. Hence the program was
modified, fixing W and H each at a 2-term Fourier
expansion and allowing for an ever-increasing
number of terms for F and T. Typically for the
value of R = 2.9218 x 105, the increasing of the
number of Fourier terms for the dependencies of

F and T required the increment size (8t) to be
reduced to preserve numerical stability, ranging
in value from 0.0002 for a one-term expansion to
0.00005 for a fourteen-term expansion.

51 RESULTS

The fluid oscillates to and fro rather than in a
circular motion with the transmission of heat
through the fluid being due to diffusion from this
oscillatory path: a much slower transmission rate
than for dynamic convection.

Figure 1 illustrates that when W was at its maximum
in amplitude, whether it be positive or negative,
the temperature distribution assumed a stable
stratification across the bulk of the fluid where-
as at the boundaries the unstable gradient was still
dominant. The effect of the formation of this
stable gradient is to draw potential from the flow
in order to slow it down. This cbéntrasts with the
effect of the inverse gradient, which is to supply
potential to the flow to enable growth of the
disturbances.

The solutions of F (see Figure L4 ) display sharp
peaks near the boundaries. If we consider equation
(6), we realise that for steady finite amplitude

of z oscillating in time, then the peaks of the
curve of F exist where D2F is large and the require-
ment that DT, is large is satisfied near the
boundaries (see Figure 1). Physically, the heat
flux increases when convection occurs and this
requires that the heat input must inerease which
implies that the gradient at the outside of the
boundary must increase to input more heat flux.

To satisfy continuity considerations, the tempera-
turn gradient on the inside of the boundary must
increase and hence form a thermal boundary layer.
Hence the D2F increases in this layer and this is
depicted on the graphs. An increased value of the
Rayleigh number (R) corresponds to an increase in
the temperature difference across the flow where
the other terms in the Rayleigh number eguivalence
are taken to be constant.

Figure 5 provides a comparison between the solutions
for the one-mode approximation (Van der Borght
[1974]) and the spectral method utilized here. It
can be seen that the nonlinearity is dominant at
values of the Rayleigh number very close to the



linear value. The one-mode approximation does not
indicate the rapid growth of the maximum velocecity

with increasing Rayleigh number. This rapidity of
rate of growth is most dominant for R values near

the linear, a slower increase being prevalent for

higher values of R.

The results indicate that at a point of the flow in

an x-y plane at a specific depth, the vertical velo-
city is oscillating in time (t). At a specific x-y

value, there is osecillatory motion both in the time

and depth dependencies.

T
=1.01

| | -

0 @255 1::0
Figure 1  Variation of the temperature (T) with
vertical height (Z). R = 2.9218 105 Curves
(1) When W(MAX) is positive or negative,
(2) when |W| minimum

W/10?2
aH[F R=2.9218 10°

1 b Z
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Figure 2 The variation, of the vertical veloecity
(W) with the vertical height (Z), for selected values
of the Rayleigh number (R).
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Figure 5 Variation of W(MAX) of overstable oscilla-
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represents the one-mode curve; The spectral curve is
represented by the continuous line.
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