7th Australasian Hydraulics and
Fluid Mechanics Conference,
Brisbane, 18-22 August, 1980

Natural Convection in Inclined Cavities Filled with a
Compressible Fluid with Variable Properties:
A Numerical Study

E. LEONARDI
Research Fellow, The University of New South Wales, and New South Wales Department of Public Works

and

J.A. REIZES

Senior Lecturer, The University of New South Wales

s, INTRODUCTION

Natural convection in rectangular cavities with a
horizontal temperature gradient has been extensively
studied mnumerically with the result that  this
problem has become a "comparison problem" for the
testing of various numerical techniques (Jones,
1979). However the comparison study and most of the
previous work (e.g. Mallinson and de Vahl Davis,
1977 and Roux et. al., 1978) has been based on a
set of equations which have been simplified ' by the
introduction of the Boussinesqg Approximation (Gray
and Giorgini, 1976). Only a small number of workers
have considered all properties to be variable. Rubel
and Landis (1970) used a linearized approach while
Polezhaev (1967) solved the complete equations,
ineluding the continuity equation, for an air filled
cavity, for one value of temperature difference and
one aspect ratio only.

Teonardi and Reizes (1979, 1980) developed a method
for solving the complete equations without the need
for the solution of the continuity equation, so that
full advantage could be taken of the method of false
transients (Mallinson and de Vahl Davis, 1973) for
speeding wup convergence and presented results for
air, for aspeet ratios one and two in both vertical
and inelined cavities. They concluded that whilst
the flow field was significantly affected by the
introduction of wvariable properties, in particular
the variable density, the rate of heat transfer
across the cavity differed by a maximum of ten
percent from values obtained using the Boussinesg
Approximation, in the Rayleigh number range
10*<Ra<10%. At low Rayleigh numbers the differences
were substantizl and could not be neglected.

The method developed by us (Leonardi and Reizes,
1980) has been extended +to include water as the
fluid fi1lling the cavity. A systematic study of the
effects of fluid property variations on the flow and
temperature fields is presented for water filled
cavities inclined at 60° to the vertical.

2. MATHEMATICAL FORMULATION

2.1 Governing Equations

The two dimensional cavity considered is shown in
Fig. 1. Choosing ¥}, the size of the box in the y
direction, as the scale factor for length, the shape
of the box .is determined by the aspect ratio

L=X4/Y4. The use of pl, an arbitrary reference
pressure; py the density at pressure p; and
temperature T (the ecold boundary absolute
temperature); the coefficient of viscosity and
conductivity ué and ki at T¢; Yéz/mé {where od is
the thermal diffusivity at the temperature T4) and
aé/Yé as scaling factors for pressure, density,

coefficients of viscosity and thermal conductivity,
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Figure 1. Definition sketeh of the cavity

time and velocity and the introduction of the non-
dimensional temperature 6=(T' - T4 )/( Ty - T¢ fwhere T
is the local absolute temperature of the fluid and
Ty is the absolute temperature of the hot boundary )
permits the equations representing the conservation
of momentum (written as a vortiecity transport
equation) and the energy equation to be written
(Leonardi and Reizes, 1980),
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where parameters without the prime are non-
dimensional, u and v are the velocity components in
the x and y directions respectively, ¢ 1s the
vortieity (Z=VxV), Ra is the Rayleigh number

(Bggoh ™Yy (Th-T¢ )Th /ueke), BY isthe coefficient of
volumetric expansion at temperature T} and pressure
Dp, E' is the gravitational acceleration, Cﬁ the
specifiec heat capacity at constant pressure, Pr is
the Prandtl number (u¢/phal), N=B'T', € is the non-
dimensional = temperature difference ((TH-T4)/Té),
Po=pt/(phCheTs), Cn=(ulg'/ph)*/¥CheTé and ¢ is the
dissipation funection.

Since the density is pressure dependent the value of



the pressure is required. The equation for the
pressure is obtained by taking the divergence of the
Navier-Stokes equations to yield (Leonardi and
Reizes, 1980),

+ (VXE)eV(A+p) + VEA(VY) + V(Xep)-9(V-Y)
+ (A 20)V(V2Y) + V2U-V(r+2u) + Vo(V-VVl)
+ Ve ((VW)+(Vu)) - VeV(V?n) (3)

where A is the non-dimensional second coefficient of
viscosity (A'/ud)

and P = pp + Ap (4)
where p, 1is the pressure at (x=0,y=0). (3) has been
written in vector form since the expanded equation

in two dimensions has thirty six terms!

The necessity for solving the continuity equation is

avoided by defining ~a compressible stream
funetion &, such that,

u = (1/p)(8E/8y) and v = -(1/p)(8E/3x) (5)
so that in the steady state the equation of
continuity dis automatically satisfied. It may be

shown (Leonardi and Reizes, 1980) that the vorticity
and compressible stream function are related by,

1/3€ %o , € 3p
p|ox 9x dy 3y

it has been assumed that the
specific heat capacity at constant
small in comparision with other
(Mayhew and Rogers, 1973) and
that 1little error is therefore introduced for
moderate temperature and pressure changes. This
however is not true for the other properties.

e
ox?

FE

¥ a2 -pz + (6)

In deriving (2)
variation of
pressure, Cp, is

property variations

2.2 Fluid Properties

All but one of the relationships presented in this
section were obtained from Bretsznajder (1971).

The Tamman-Hesse equation for the viscosity can be
written in non-dimensional form as,

5 eD[(ae+1)"3 L] (7)

H

where D = 6.18 x 107T4™?

and the equation for 'the coefficient of thermal
conductivity as,

k=1 + ebT4/10° (8)

Since the pressure has to be evaluated, not all
approximate equations of state for water were
suitable. The Tumlirz equation (Eckart, 1958) was

the most easily handled and can be written as,

1 -4 K{ }_1
= —6.98 x 10 e bETS
? pr[ ! ppy * DL (9)
where K{ = 1.80308+1.13991x 10" %t -7.54871x10 °t?
p. = 5.96804 x 103 + 38,5035t - 0.379968t2
and t.= Té(l+€8) - 3731
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From (3) it is possible to calculate the value of Ap
and since the actual pressure has to be known in
(9), po has to be evaluated. Now if it is assumed

that the dnitial mass i1 the cavity is XSY4pp and

that the mass of +the cavity remains constant it

follows that,

%J pdA = 1, (10)
A

where A is the non-dimensional area of the cavity.

The substitution of (9) and (4) into (10) together
with some algebraic manipulation leads to,

( pd
Ty o prJ T [-1_ - 6.98 x 10_“pJ e + —?JdA
A 1 (s Pr
Po = ik T (ll)
pI',J = [_, - 6.98 x 10"*p)cm
At \Pr
Thus from (7, 8, 9 and 11) it is possible to obtain

the values of all the properties, if the temperature
field is known. A similar set of relations can be
written for air (Leonardi and Reizes, 1980).

2.3 Boundary Conditions

At y=0 and y=1, 6=1 and =0 respectively (Fig. 1).
The other boundaries  are adiabatic that is,
(96/0n)p=0 where n is the cocrdinate normal to the
boundary and the subscript B specifies evaluation at
the boundary. The compressible stream function £=0,
at the boundaries and the non-slip condition
(8£/8n)p=0, can be substituted into (6) to yield the

vorticity boundaryccndition.;B=—l/p(32£/an2)3. The
normal pressure gradients on +the boundaries are
obtained by a numerical evaluation of the two

dimensional form of the Navier-Stokes eguations.

The numerical technique used, is fully described in

Leonardi and Reizes (1980).

3. RESULTS AND DISCUSSION

Since results for air filled cavities have been
presented earlier (Lecnardi and Reizes, 1979, 1980)
results for water filled cavities only will Dbe
discussed. Although variations in the reference
temperature, T{ (also the cold boundary
temperature), have an effect on the solutions for

water filled cavities, the general conclusions are
not altered, so that only T§{=288K is used for the

results presented here. Solutions have been
obtained for cavities ineclined at ¢=-60 (see
Fig. 1), 10°<Ra<q0®, 0.001<e<0.3, Gn=4.138x10-1'°,
Pn=8.298x10"° and Pr=8.1.

Whereas for air filled cavities it has been shown
(Leonardi and Reizes, 1980) that the solutions
obtained using variable properties did not differ
significantly from the solutions generated using the
Boussinesq Approximation (B.A.) for €<0.1, for water
filled cavities signifieant differences occur at
€=0.01 as may be seen in Fig. 2a. For the case given
in Fig. 2 the B.A. solution yielded a minimum value

of the compressible stream function of =23.54 and
the value obtained with variable properties was
-25.01; a difference of 6% when the temperature

difference between the hot and cold boundaries is
less than 3K. As may be seen in Fig. 2b, there is
very little difference between the two solutions for
the temperature fields. Of course, no discernible
differences can be seen between the solution for any
of the parameters at low values of € (e<0.001) with
variable properties and the B.A. solution for the
same Rayleigh number. However, even .at these low
values of g, if the solutions are compared pointby
point, slight differences (usually in the fifth
significant figure) occur; the most obvious being



Figure 2.

(@)
Figure 3.

Streamlines (&) and Isotherms (b) for Rayleigh No.=10°, Aspect Ratio=1,Angle of Inelination=-60°,
Ref. Temp.=15°C, Ref. Pres.=1Bar, Boussinesq Approx. (dashed lines) and £=0.01 (full lines)

Streamlines (2) end Isotherms (b) for Rayleigh No.=10°, Aspect Ratic=1,Angle of Inclination=-60°,

Ref'. Temp.=15°C, Ref. Pres.=1Bar, £=0.3

that the B.A. solutien of the flow field Ais
necessarily symmetric about a diagonal and the
variable properties solution is not.

As the temperature difference between the hot and
cold boundaries is increased the flow and
temperature fields change beyond recognition, as may
be seen in Fig. 3. The single cell structure in
Fig. 2 has now become a two cell structure with the
two cells occupying a much larger proportion of the

cavity sc that the flow is essentially of the
"boundary layer" type. The 1two cellsareneither
symmetrically located nor of equal strengthas occurs

in B.A. solutions at higher Rayleigh numbers. The
minimum value of the compressible stream function
has now become -50.95; more than twice the B.A.

solution! Since the coefficient of viscosity on the
hot boundary is approximately one fifth of the value
at the cold boundary, the "boundary layer" on the
hot boundary dis ‘thinnmer than the oneon thecold

— — Boussinesg Approx.
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boundary.

In a previous publication (Leonardi and Reizes,
1980) we explained the reduction of convection
between a B.A. solution and solutions withvariable
properties for an air {illed cavity at high
temperature differences between the boundaries
(e0.1), by showing that the B.A. solution over -
estimated the density changes in the cavity. In
water the reverse is true! The B.A. approach leads
to a serious under-estimate of the density change,
as may be seen in Fig. 4. For example,. in air at e=2
the over-estimate in the change in density between
the cold and hot boundaries is 48% if the B.A. is
used whereas in water at €=0.3, the under-estimate
of the change in density is 370% (Fig. 4).  This
leads to a considerably increased convection in the
cavity with the result that the changes in the flow
and temperature fields in a water filled cavity as €
is increased, are considerably greater than those in
an air filled cavity. Similar results are cbtained
at aspect ratios other than one and for Rayleigh
numbers other thar 10° as may be seen in Fig. 5.

The reduction in conveetion together with an
increase 1in the coefficient of heat transfer at the
hot boundary led, in the case of .an air filled
cavity, to Nusselt numbers which were some 10%
higher (in the worst case of an inclined cavity)
than those predicted by the B.A. approach (Leonardi
and Reizes, 1980). As may be seen in Figs. 6 and 7,
for water filled ecavities at a given Rayleigh
number, the Nusselt number increases significantly
as the non-dimensional temperature difference g,



Figure 5.
Ref. Temp.=15°C, Ref. Pres.=1Bar, Boussinesg Approx.
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increases. This is due to the large increase in the
buoyancy force, considerable reduction in the
coefficient of wviscosity and a  slight, but
significant, increase in the coefficient of heat
transfer, at the hot wall as € is increased. These

effects lead to muech larger Nusselt numbers when
variable properties are used than those obtained
when the B.A. is invoked. It follows that the
Boussinesq Approximation camnot be wused to obtain
reasonable results if the temperature difference
between the hot and cold boundaries exceeds 3K

(i.e. €0.01) in a water filled cavity.

4. CONCLUSION

Numerically ealculated flow and temperature fields
and heat transfer data for water filled inclined
cavities have been presented. It has been shown that
the flow and thermal fields are substantially
affected by the introduction of variable properties
and that the simpler Bousginesq Approximation camnot
be used to obtain reasonably accurate heat transfer

(b)

Streamlines (a) and Isotherms (b) for Rayleigh No.:lO“, Aspect Ratio=2,Angle of Inclination= 60°,

(dashed lines) and €=0.3 (full lines)

data for temperature differences between the hot and
cold wall greater than 3K.
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