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SUMMARY A model equation is developed to predict the response of propeller anemometers in turbulent flow.
The equation is nonlinear, and is shown to describe anemometer motion correctly for the situations which

are easily simulated in a wind tunnel.
i INTRODUCTION

The propeller anemometer is used to measure wind
structure over a large range of windspeeds in a wide
range of applications. These instruments are cheaper
than laser anemometers and more robust than hot-wire
sensors. They have low starting speed and, unlike

cup anemometers, can be used to measure wind direction.

However a number of anomalous features of propeller
anemometer behaviour have been reported in the
literature. These include a non-cosine response to
wind direction, changes in directional response and
calibration constant with wind speed and changes in
time constant with wind speed and direction. The
purpose of this paper is to develop a model equation
of motion for the anemometer which accounts for these
anomalies and thereby allows a more accurate recovery
of the wind velocity vector from anemometer signals.

Particular attention is paid to the Gill anemometer,
a lightweight helicoid driving a d.c. tachometer
generator. The experimental results presented below
refer to the model 27101, made by R.M. Young Co.

Notation

I - moment of inertia of rotating parts

P - effective pitch

R - propeller radius

U - wind speed

Us - stall speed of propeller

w - rate of rotation of propeller

@ - angle between propeller axis and wind vector
P - air density :

Vv - air kinematic viscosity

2 THE EQUATION OF MOTION

An equation of motion for the anemometer is given by
equating the rate of change of angular momentum of
the moving parts to the sum of the various torques
arising in an unsteady wind flow. If it is assumed
that the aerodynamic forces on the propeller depend
only upon the instantaneous state of flow (i.e. no
added mass or similar effects) then dimensional con-
siderations lead to an expression for the aerodynamic
torque of the form

Q- = PUPR3q (1)
Here q. is a nondimensional torque coefficient which
can be written, for each particular propeller,

q. = 9q.(2,0,Re) (2)
where A = WwR/U, (3)
Re = UR/v.
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Implications for the measurement of turbulent flows are discussed.

It is implied that U and @ are values averaged over
the swept area and blade-passing interval of the
propeller.

Now the ideal propeller anemometer (with no mass or
shaft friction) would always run in a state of zero
aerodynamic torque so that in steady or unsteady
flow

A(t) = Ao(H,Re)
where Ag¢ is the solution of the steady flow express-
ion

qc[lo,B,Re) =0
If a real instrument always stays close to this ideal

behaviour we may expect that |\ - Ag| << 1 so that
q. may be expanded

@ = 8 o=,
Ao
leading to
in
Q, = °F Ug(B) (VE(®) - wP) (4)
where £(8) = XoP/R, g(8) = - [dq/dA Note

I3
that in the last step the dependence of floand g on
Reynolds number has been dropped. This is because
the 1ift and drag coefficients of the propeller
blades are not expected to be strongly affected by
Re over the operating range of the propeller.

The real instrument also has a frictional torque
which opposes shaft rotation. This must vary accord-
ing to the load carried by the bearings and their
rate of rotation, but it is found that friction is
adequately accounted for if this retarding torque is
assumed to be a constant, Qg (which may vary between
anemometers). Equating the torques Qs and Qa with
the rate of change of angular momentum now gives the
desired model equation of motion;

dw _ (6) -
LPg = ugﬁ) [U£(8) - Pw] + Usz (5)

where g(o)L = I/pR" and g(o)Us2 = PQS/p”, the sign
being chosen to oppose that of w. Equation (5) is
the basis of this paper. It has three unknown
functions, which can be evaluated by wind-tunnel
calibration as explained below.

An interesting point is that for a frictionless
anemometer the model equation can be written

Lg(o) dw % ol

SORT UE(O)/P



where U = dx/dt. Thus the anemometer is a linear
first-order velocity transducer, but only if the wind
run x is the independent variable (as we might expect
from its design).

3 ANEMOMETER RESPONSE
3.1 Steady Axial Flow

The constant P can be chosen so that £(o) = 1, when
in steady axial flow (5) reduces to

Pu = UF USZ/U (6)

In high-speed tests (U >> Ug) P may be evaluated as
the ratio U/w - it is therefore the effective pitch
of the propeller. Blade element theory could be
used to predict the relationship between P and the
geometric pitch (in terms of 1lift and drag co-
efficients). Since it is much easier to find P by
experiment, we note here only that the theory in-
dicates that blade drag should cause P to be a few
percent higher than its geometric value. The pro-
peller radius also has an effect - it is found that
P tends to decrease with radius R (R.M. Young, 1972;
Lindley et al, 1974b; Jackson, 1976).

At slower speeds it is found experimentally that U/w
depends strongly on U - for example Brook (1974)
found that at 1 m/s this calibration ratio was 14%
higher than P. Precisely this behaviour is predict-
ed by (6). If U and w are measured over the speed
range 0-1 m/sec, then plotted as Uw versus U?, a
fitted straight line intercepts the axis Uw = 0 at
Us®. Since this procedure optimises the fit of
equation (6) to the actual anemometer response at
low speed it does not necessarily correspond to the
speed at which the propeller first starts to rotate,
usually called the threshold speed. Although in
practice the two speeds are found to have similar
magnitudes (Jackson, 1976), to distinguish Ug it will
be referred to as the stall speed.

At such low speeds it is difficult to measure U
accurately. Jackson (1976) and Milson (1978) solved
this problem by towing propellers through still air.
Some of Milsons results are plotted in Figure (1) in
the manner suggested by (6). The agreement is good
down to speeds close to the stall speed.

3.2 Steady Oblique Flow

Equation (5) now gives
w(6) £(8) + U *g(0)/U”g(8)

= 7
w(o) 1 3 USZ/UZ .

+1

+

so that at high speeds w(8)/w(o) = £(0), and the
function f is recognised as just the directional res-
ponse of the frictionless propeller. In principle
£(0) and g(8) can be found directly from the torque
coefficient qc - this requires Qa to be measured with
the anemometer forced to rotate at various w for each
U and 6. Wyngaard et al. (1971) used this method to
evaluate similar unknowns for a cup anemometer
(although they did not notice that their data show a

good agreement with the formulation used here in (4)).

It is easier to determine f(68) by high-speeu cali-

bration (except that this will not work near 6 = 90°).

The resulting shape of this function is well docu-
mented. It shows large departures (up to 15%) from
the ideal form f(6) = cos@, the error increasing as
the propeller radius decreases. The author has
obtained results which agree well with the manu-
facturersjcalibration for angles 6 < 90°, but for

B > 90° finds a dependence of £(8) on windspeed.
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Hicks {1972) reports this same problem for all O with
an anemometer fitted with a shaft extension, so it is
likely to be caused by interference between the wake
of the shaft and the propeller downstream.

Equation (7) predicts that there is always a small
range of angles near 90° where the propeller does
not rotate, and that this range of stall should de-
crease as U increases. This is also observed in
practice - at 87°, a 230 mm Gill propeller will
rotate at 6 m/sec but not at 2 m/sec.

353 Unsteady Motion

Solutions to (5) when U is constant but w varies are
easily obtained.If a small braking torque which slows
the anemometer to speed wo (but without stalling) is
suddenly released, the anemometer response is

_Utg(8)

w = w1 + (We-wi)e Lg(o)
so by recording w we can find the time constant

T = Lg(o)/Ug(8). In axial flow L = UT, which is the
expression normally used to define the response

length of the propeller. Measurements on the Gill
propeller give L = 1.0 * .05 m, depending on pro-
peller radius. For oblique flow it is convenient to
speak in terms of the axial response length, defined
as UTcosf®. The ratio of the axial response length

for some arbitrary O to its value for 6 = 0 is then
found to be g(o)cos8/g(6), which shows the physical
significance of the function g(8). The ratio &(8) /(o)
has been measured earlier - Figure (2) summarises

the results of Hicks (1972), Duchon et al, and

Jackson (1976). The behaviour of this function near

8 = /2 is important for anemometers used to measure
velocities transverse to the mean flow direction.

Hicks postulated that it has the form (cos8)’ near

6 = /2, but there is too much scatter in the data to
confirm this. The author prefers to use {cos(O.QBB)}%;
which does not vanish at 6 = T/2,

34 Motion in Turbulent Flow

When U makes small fluctuations about a mean U it is
clear from (4) that the change in aerodynamic torque
for a small increase in U is greater than the corres-
ponding change for the same decrease in U. Thus the
mean value of w is greater than that obtained by sub-
stituting U for U in (5). This overspeeding is a
well-known characteristic of rotating anemometers.
The magnitude of the error can be obtained by per-
turbation methods in the cases where the fluctuations
in velocity about the mean are relatively small
(Kaganov and Yaglom, 1976). If we consider speed
changes only (6 = 0) it is not difficult to show that

UL = LEs2-UL
Py =ﬁ-_§ *EiE(S)Lzsz_‘_uz ds +
{UZ R 2)2
— = = | E(s) ds +
P2 (w-w) 2 202 L2524+ U2

where E(s) is the power spectral density of U(t) at
angular frequency s, and the overbars denote a time
average. The ideal values are given by L = Ug = 0,
so in practice the mean speed may be over- or under-
estimateéd according to the relative magnitudes of L
and Ug. A first-order linear instrument with time
constant L/U would give a similar expression for the
mean square, but would predict Pw = U.

Anemometers used to measure transverse wind com-
ponents operate near 6 = T/2. It is interesting to



determine whether simple solutions to (5) could also
be obtained for § ~ T/2. The response functions can
then be approximated by

£(0) = a sing,
g(8)/ge) = b + c/sing/

where ¢ = 6 - /2, and a,b,c are constants. Writing
the axial component of velocity as Up = U sing, (5)
becomes

dw

LP e (Ub + c/UA/)[aUA- Pm) + Ug

We can now postulate, for example, that U be replac-
ed by U, and /Up/ by some function of its r.m.s
value oy, say owh(%w/U)- this is equivalent to say-
ing that for 6 ~ T/2 the response length distribu-
tion g(6)/g(o) becomes a function only of the in-
tensity of transverse turbulence I = 0,/U. Equation
(8) is then (omitting the Us term)

'I‘_—epj“’—t + Py = aU, (92)
U

with an effective response length given by

LTG- = [b+ cIh(D)] ! (9B
This is first-order and linear, and would allow
transverse spectra to be computed directly from the
anemometer signals.

Now Fichtl and Kumar (1974) computed effective res-
ponse lengths from the ratio of the power spectral:
density of the output of a vertical anemometers
Ep(s) to the p.s.d. of the transverse wind velocity,
E(s). They found that this ratio was well repre-
sented by

Ea(S) fh [1 + (s Le/ﬁ)z]dl )
E(s)

which is exactly what (9a) would predict. They also
showed that Lg is a function of I (and indeed this
idea is theirs) - their data has been replotted here

as Le/L versus I, in Figure i{(3). Also shown is their

best fit line (b =0, h =1 ?3j), but there seemns to
be no reason to reject a straight-line fit. A ten-
tative choice is L€/L = 0.05 + 1.5 I (where the
value b = 0.05 also fits Figure (2)). It is con-
cluded that there are reasonable grounds for expect-
ing (9a) to be a good model of transversepropeller
behaviour, but that it should be used with caution
until the function le/L is more clearly defined.

Finally, when fluctuations in U or 8 are large we
can resort to numerical solutions of the equation of
motion. The anemometer output Py, has been calculat-
ed in this way for the flow 6 = 0, U =1U +

Au sin (2mUt/y) for various values of Au and wave-
length vy (and with U = 10 m/s, Ug = .15 m/s, and

L =1.0 m). The phase shift and attenuation were
found to be quite noticeable when Au/y = 0.2, even
for a wavelength vy = 16 m, but both were predicted
well by first-order linear theory with a time con-
stant L/U . For 8u/U = 0.4, P, became appreciably
non-sinusoidal so the linear theory would be less
valid. The output for Bu/g - 0.8 is shown in Figure
(4), where the distortion has become severe.

Also found was the response of an anemometer set

at 90° to the flow U = 10 m/s, 8 = 0.3 sin(2mUt/Y)

for which the ideal response would be Usin®. Here

the numerical solution used the function f(8) given
by the manufacturer, and g(6)/g(o) = [cos(O.QSS)]%.

There is not much distortion of the shape of the
response, but now there is large phase shift and
attenuation even for y = 16 L.

4 INTERPRETATION OF SIGNALS

It is now assumed that (5) does provide a reliable
model of propeller anemometer behaviour, so that it
can be used to infer U and 6 from measurements of
anemometer signals. We have found that axial velo-
cities can be calculated easily only in the specia.
cases of low turbulent intensity and 8 ~ 0 or 6 ~ T/2.
However in general it will be necessary to measure
simultaneously the rotation rates of three anemo-
meters of differing orientation in order to find the
three components of wind velocity.

Since the model equation (5) is not linear in U, it
cannot be used to find unique values of velocity -
that is, a given signal w(t) can be generated by more
than one velocity vector. This can be seen by re-
writing (5) to solve for Uf(8);

(2U£(0) - P,) sign[2Uf(8) - Py]
- P22 + 28(0) £(0) [LPy * U2 < 10
g(sJ )[ W = Vs, ] ( )

A unique value of Uf(0) can be found only if there
is some additional means of sensing the sign of
(2uf - Rw)'

The obvious way of resolving this problem is to
assume that (2Uf - P,) and P, have the same sign.
This is incorrect only if (2Uf - Py) changes sign,
when the wrong solution may be chosen for some of
the time.

It remains to calculate three velocity vectors from
three values of w (from say three orthogonal ane-
mometers). Equation (10) shows the way to proceed.
First, an assumed value of 8 is used with w(t) and
w(t) to give a solution for Uf£(8) for each anemometer.
An iterative solution for U and 8 is then required
(as pointed out by Horst (1973)). The new value of

8 is then used to recalculate the Uf(6), until the
process converges. Details of a successful procedure
are given by Jackson (1976). This solution must be
carried out to find the velocity at each time step,
so use of a computer is essential.

One point which is often overlooked is that anemo-
meters used in an array may interfere with one an-
other when any angle of attack 8 exceed513ﬂ/4
(approximately). This means that ideally "the
directional response should be determined with the
other array anemometers present, and also that this
response will not be a function only of the angle 6.

5 CONCLUSIONS

A model equation of motion has been developed for the
propeller anemometer which correctly predicts the
anomalous features of the behaviour of this instru-
ment. This equation is nonlinear so that in general
the statistical properties of the wind velocity can-
not be obtained from corresponding properties of the
anemometer signals. It is then necessary to solve
the model equation to give the effective windspeed
Uf(8) at each time step. Since computer analysis is
necessary in any case to derive the actual velocity
components from the Uf(8) values from three ane-
mometers, there is little extra effort involved in
accounting for the effects of friction and propeller
inertia. The model equation shows how to compute
these effects, and thus allows the use of propeller
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arrays in turbulence of larger magnitude and fre-
quency than has previously been possible.

The anemometer behaviour is least well described
when the anemometer axis. is nearly normal to the
wind flow, and moreover the model equation suggests
that decoding of signals can then be ambiguous. To
avoid these difficulties it is suggested that
propeller arrays should be mounted so that no
anemometer is normal to the mean wind direction.
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