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SUMMARY The role of topography in forcing the stationary eddy flow field of the atmosphere is studied

using the spherical equivalent barotropic meodel.

The importance of nonlinear interactions is probed by

comparing nonlinear statistical mechanical equilibrium solutions with linear steady state solutions.

1 INTRODUCTION

Many studies have been made of the effect of oro-
graphy and diabatic heating in forcing the station-
ary planetary-scale flow field of the atmosphere.
These range from a linearized treatment of a baro-
tropic model incorporating topographic forcing only
(the earliest being that by Charney and Eliassen,
1949), through simple baroclinic models forced by
heating, to numerical simulation in multilevel
global circulation models, which include both topo-
graphic and thermal forcing. The most recent full
scale model study is that of Manabe and Terpstra
(1974) , who alsc review the intervening literature.

While full scale numerical studies have added to our
understanding, such results are difficult to genera-
lize and may be subject to uncertainty due to doubts
concerning the adequacy of the resolution achieved.
Consequently, further theoretical studies using

simplified models have since been made (for example, s

Grose and Hoskins (1979), Egger (1976)) in order to
provide further insight inte the dynamical effects
of orography in particular. Although these semi-
analytic models are much more transparent than the
large numerical models, they are subject to a number
of simplifying assumptions, the effect of which is
largely unknown. In particular, the linearity
assumption, in which interactions among stationary
waves, and between stationary and transient distur-
bances are neglected, appears to be universal.

In this article, a topographically forced inviscid
barotropic medel in spherical geometry is used to
compare fully nonlinear and linearized solutions for
the stationary waves. Although differing in minor
detail, the linear solutions we present are very
similar to those of Grose and Hoskins (1979), and
the main interest here centres on the nonlinear
solutions, which we obtain using the methods of
statistical mechaniecs. Such methods are well known
in the theory of two-dimensional turbulence (Kraich-
nan, 1975), but have only recently been applied
directly to flows of relevance to the atmosphere by
Frederiksen and Sawford (1980a). In that study,
statistical mechanical sclutions were used to :
explain some unusual features which occur in the
evolution of unforced inviscid barotropic models,
and which also occur in multilevel models incorpora-
ting both diabatic heating and viscosity.

Thus, although we emphasize that the present baro-
tropic study neglects diabatic heating and baro-
clinic effects and as such, cannot be expected to
reproduce accurately observed stationary global flow
fields, we hope to gain from these statistical
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mechanical solutions valuable insights into the
consequences of nonlinear interactions and so
improve, at least gqualitatively, our understanding
of the effects of orographic forcing.

2 THEORY
2.1 Model Details
Taking a_(earth's radius) and ! (earth's angular

velocity -1 as length and time scales, the non-
dimensional equations defining our spherical
equivalent barotropic model are

av2u/8t + J(b, Y2y + 2u + h) =0 (1)

where h = 2 ug AH/RT (2)
2408 Bogpivididg

and J(f,q) = 3% an 30 AA (3)

Here, U is the streamfunction, u sin (latitude),

A = longitude, t is the time, H is the height of the
topography, R is the gas constant, T the horizon-
tally averaged global surface temperature, g the
acceleration due to gravity and A is the value of
the vertical profile factor at 1000 mb (see, for
example, Holton (1972), p.129). We take A 0.8,

R 287 J kg‘l k! and T 273 K, in order to match
the linear solutions to (1) with those of Grose and
Hoskins (1979) who use the corresponding free
surface equations with a mean free surface height of
10 km.

Solutions to (1) are obtained in spectral form by
expanding both the streamfunction and the forcing

function, h 2y + h,; in spherical harmonics:

Iml+a

b= 7 e Pﬁ(u)eimA (4)
m=-J n=|m!
= g |m|+J ~ m imA
and e 7 h_ P (me (5)
m=-J n=|m| L

: m i

The functions P, (u) are normalized associated
Legendre functions, wmn and hmn are spectral ampli-
tudes, m is the zonal wavenumber, n the total wave-
number, and J the rhomboidal truncation wavenumber.
2.2 Equilibrium Solutions

We present the equilibrium results without deriva-

tion. Details of the analysis are given in
Frederiksen and Sawford (1980a,b) and in references



contained therein. An essential property of the
barotropic eguation is that the total energy E and
potential enstrophy F, where

g Iml+a

e | 2
E=Y ¥ ¥ n(n+1) |¢mn| (6)

B
| n(n+l) Yol |2 (7

mn

are invariant.

Now, the equilibrium solutions consist of ensemble
averages (over a large number of realizations of
the system, all with the same E and F) which are
equivalent to long-time averages over a single
realization. For the forced system here, the
expectations of the spectral coefficients are non-
Zero,

< > = h + + 4
wmn B hmn/[u B n(n+l)] (8)
The expectation for the energy, Emn, in the mn mode
is

E = Y%/la + 8 a1 + Y% nlorl) [<y >[2. (9)

The parameters o, B are determined by equating the
expectations for the total energy and potential
enstrophy to the invariant values E and F deter-
mined by the initial conditions.

Since the ensemble averages are equivalent to long-
time averages, (8) clearly represents the station-
ary part of the streamfunction field. While the
expectation of the transient part of the stream-
function is zero, the energy of the transient field
is not. Thus we see that the energy expectation
(9) consists of two parts. The second term on the
right clearly represents the energy of the station-
ary flow, while the first term represents the
energy of the transient flow.

The parameter B is generally positive (Salmon et
al., 1976) provided the resolution is not too

coarse (that is, the truncation wavenumber J is not
too small), and since o+fn(n+l) is required to be
positive (the transient energy must be positive),

we see from (8) that the streamfunction is positive-
ly correlated with the topographic field at all
scales.

In order to realistically model the zonal flow
(which in the atmosphere is largely forced by
diabatic heating and baroclinic effects), we intro-
duce the heuristic device of an effective zonal
'thermal mountain'. That is, we adjust the zonal
forcing coefficients to reproduce a specified zonal
flow. Full details of the procedure are given in
Frederiksen and Sawford (1980b). The nett result
is that theequilibrium solutions are used only to
calculate the eddy part of the stationary flow
field, and depend not only on E and F, but also on
the given climatological zonal streamfunction
coefficients. In practice, qualitative features of
the eddy field are quite insensitive to the details
of the model, and our results do not depend strongly
on the thermal mountain artifice.

233 Linear Solutions

To allow comparison with the results of Grose and
Hoskins (1979), we include a linear drag temm and a
biharmonic diffusion term in (1), which after
linearizing the eddy terms, becomes at steady state
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J(W,V2p +h) + T, VZP+2u) +
KV2¢' + K'V5¢' = 0 (10)

Here, E-is the fixed zonal flow streamfunction, ¥'
is the stationary eddy streamfunction, and k and k'
are drag and diffusion coefficients respectively.

To clarify the comparison with the nonlinear
solutions, we present two special cases of the
solution to (10). The complete solution involves a
set of simultaneous linear equations, and is
conveniently but not very transparently handled
numerically. Full details are given in Frederiksen
and Sawford (1980b). First, we ignore drag and
diffusion, and consider the special case when the
zonal flow is solid-body rotation,

V= EEI'P?(u) -yu where y = —J@E Yo7 > 0. (11)

Then, Y=y ﬁmn/[—z(y+1) + yn(n+l)] (12)

Second, for the same zonal flow, but with drag and
diffusion included,

¢$n =y ﬁmn ¥ eig, (13)
where ! = {[yn(n+l) - 2(y+1)]?
+ [kn(n+l) + k"' n3{n+l)3]2/m"’1}1/2 (14)
and 8 = arc cos {[yn(n+l) - 2(y+1)I1r}. (15)
3 COMPARISON OF LINEAR AND NONLINEAR SOLUTIONS

3.1 Superrotation Zonal Flow Without Drag or
Friction

In this case, the linear solution (12) has the same
form as the nonlinear equilibrium solution (8),

with vy replacing B and -2(y+l) replacing a.

However, whereas (8) implies a positive correlation
at all scales between the topography and the stream-
function amplitudes, for the linear case, long waves
for which -2(y+1) + yn(nt+l) < 0 are negatively
correlated with the topography. Furthermore, the
linear solutions exhibit resonance (or near-reson-—
ance, depending on the strength of the zonal super-
rotation) for values of n at or near n_, where

n_ (n +1) = 2(y+1l)/y. Thus, in these linear
solutions, the effect of topographic forcing on
scales with total wavenumber near n_ and zonal
wavenumbers up to m = n. is enhanced.

In contrast, the nonlinear solutions show no
resonance phenomenon. The stationary streamfunction
amplitudes in (8) are proportional to the topo-
graphic amplitudes weighted by the equilibrium
transient energy. For the usual case of a red
energy spectrum, the streamfunction field is thus
merely a low-pass filtered version of the topo-
graphic field.

These contrasting features of the two solutions show
up clearly in Fig. 1, which shows the eddy component
of the 500 mb geopotential height fields (super-
imposed on a mean value of 5400 m) forced by a
single circular mountain 2500 m high centred at 30°N
and 180°W, with a diameter of 45° latitude. The
zonal flow

Vo1 = -0.02645 or y = 0.03239 (16)

is the solid-body rotation used by Grose and Hoskins
(1979), and corresponds to a maximum zonal velocity
at the equator of 15.1 ms‘l, and a resonant total
wavenumber, 7.5. In accord with the remarks above,
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Figure 1 Nonlinear (a) and linear (b) 500 mb eddy geopotential height fields
forced by the superrotation zonal flow, (18), over a circular mountain.

note that the nonlinear eddy field in Fig. 1(a)
closely reflects the topography of the circular
mountain, and features a high over the mountain
with no small scale structure upstream or down-
stream. In contrast, the linear eddy field in

Fig. 1(b) is anticorrelated with topography at
large scales, so there is a low over the mountain.
The resonant emphasis of smaller scales results in
a great deal of structure in the rest of the field.
Particularly striking is the wavetrain which propa-
gates into the Southern Hemisphere and then back to
the upstream side of the mountain. Both the non-
linear and linear fields are symmetrical in longi-
tude.

3.2 Drag and Friction in the Linear Model

Comparing (13) with (12), we see that the effects
of drag and friction are two-fold. First, the
amplitude of Y! 1is reduced by a factor

r1yn(n+l) = 2(Y+1)|- This reduction is most drama-
tic if (12) is a resonant solution, and is also
greater for small values of the zonal wavenumber.
Second, the term e® in (13) rotates the appropri-
ate streamfunction component. For example, the
zonal harmonic e™ undergoes a rotation of 6/m
relative to the case with no drag. Thus the degree
of rotation also decreases with increasing m.

To guantify these effects, we consider the super-
rotation zonal flow (16) with non-dimensional drag
and diffusion coefficients k = 0.011507 and

k' = 1.946 x 10“7, which have been chosen to corre-
spond closely with those of Grose and Hoskins
(1979) . Without drag or diffusion, the solutions
are near-resonant with large Y. for n near

n, = 7.5. With drag and diffusion, the P% mode
amplitude is reduced by a factor of 3, the P% mode
by only a third and the P; mode suffers hardly any
reduction. Similarly, the rotation relative to the
no-drag case varies from about 70° for the P% mode
to about 20° for the Pg mode.

Thus, although the inclusion of drag prevents the
occurrence of mathematical singularities in the
linear solutions, and results in significant changes
in the perturbation streamfunction, the guasi-
resonant behaviour and hence the sensitivity to
changes in the zonal flow, remains. Scales near
the resonant wavenumber are still emphasized, and
individual waves are phase-shifted relative to the
corresponding topographic component. Details of
the comparison in Section 3.1 are essentially
unaltered by the effects of drag and diffusion.
Thus, the linear eddy geopotential height field
shown in Fig. 3(c) of Grose and Hoskins (1979) is
basically anticorrelated with topography at large
scales, with a weak upslope anticyclone and a
stronger downslope cyclone, the latter being the
dominant feature over the mountain. The wavetrain,
while still prominent downstream, is attenuated by
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drag and is virtually absent upstream of the
mountain. Drag thus destroys the symmetry of the
eddy field.

3.3 Realistic Zonal Flow

Finally, we consider the general case with realistic
shear in the zonal flow. For the linear model, we
again draw on the results of Grose and Hoskins
(1979) . The main feature noted by those authors is
that equatorial easterlies in the zonal flow prevent
propagation of the wavetrain through the tropics
into the Southern Hemisphere. In other respects,
there is close similarity to superrotation results.
Large scales are still essentially anticorrelated
with topography; the downstream wavetrain, although
confined to the Northern Hemisphere, is still
prominent, and the scale of the wavetrain is
strongly dependent on the strength of the zonal
flow.

The form (8) of the nonlinear solutions is unchanged
by variations in the zonal flow, and the resulting
eddy field remains gqualitatively similar to

Fig. 1(a). Thus, even for gquite general zonal
flows, and with the inclusion of drag in the linear
model, the essential differences between the non-
linear and linear solutions are encapsulated in the
comparison between the simplified cases of

Section 3.1.

4 CLIMATOLOGICAL ZONAL FLOWS WITH GLOBAL
TOPOGRAPHY

Here we examine the nonlinear egquilibrium solutions
and the linear solutions corresponding to observed
December to February mean zonal flows over global
topography. We consider three levels, 850 mb,

500 mb and 300 mb, for which mean zonal flows are
tabulated in Newell et al. (1969). We are concerned
only with making gqualitative comparisons with
observed stationary fields.

Figure 2 Nonlinear (a) and linear (b) NH 850 mb
geopotential height forced by Dec.-Feb. 850 mb
mean zonal flow over global topography.



For the statistical mechanical solutions with the
850 mb mean zonal flow, we take typical values for
E and F from an observed instantaneous IGY global
streamfunction (see Fig. 1 of Puri and Bourke,
1974) . As expected from the form of (8) and the
discussion in Section 3, the eddy geopotential
height field is essentially a filtered version of
the topography, with highs over the mountain ranges
of the Himalayas, Rockies and Greenland and lows in
the North Atlantic and Pacific Oceans. Similarly,
in the Southern Hemisphere, there is a principle
high over the Antarctic plateau, subsidiary highs
over the Andes and southern Africa, and a low
extending from the Ross tb Weddell Seas. Fig. 2(a)
shows the equilibrium values for the Northern
Hemisphere 850 mb gecopotential height field (eddy
plus zonal, superimposed on a mean value of 1450m).
For comparison, Fig. 2(b) shows the corresponding
linear field. Comparing them with the observed
field in Chart 1.4 of Crutcher and Meserve (1970),
we see that the nonlinear field has the basic
observed features of the Aleutian low, ridging over
the Rockies, a trough near Hudson Bay and a high
over Greenland; further, it has a low slightly
north of Norway and shows the presence of the
Siberian high. 1In constrast, the linear solution
is a poor representation of the basic features;
there is no Aleutian low and no ridging over the
Rockies, but instead there are misplaced lows over
Greenland and northern Siberia and ridging on the
east American coast.

As in Section 3, the nonlinear eddy fields are
qualitatively insensitive to variation in the mean
zonal field, so that the 500 mb and 300 mb eddy
geopotential height fields essentially mimic the
features of the 850 mb field. Consequently, the
observed westward tilt with increasing altitude is
not reproduced, apparently because of the absence
of drag and baroclinic effects in the model. We
also note that for the linear theory, for which the
500 mb streamfunction is shown in Fig. 7 of Grose
and Hoskins (1979), the comparison with observation
is also quite poor. However, those authors note
(see their Fig. 6) that the 300 mb linear field is
very realistic. The reason for this appears to be
that the stronger 300 mb zonal flow forces reson-
ance closer to the prominent m 3 topographic
scales, which thus dominate the 300 mb eddy
geopotential height field. It should be noted,
however, that this agreement depends to some extent
at least on the drag used. As the drag is decreas-
ed to zero, the low over northern Siberia rotates
westward by about 80°.

5 CONCLUSIONS

The considerable differences between the two types
of solution arise largely from the fact that the
linear solutions are resonant or near resonant
while the nonlinear solutions are not. Thus the
nonlinear eddy fields are relatively insensitive
to variations over the parameter range of interest,
but the linear fields depend strongly on the
strength of the zonal flow. Further, while the
nonlinear flow is positively correlated with topo-

graphy at all scales, the linear fields are anti-
correlated at large scales. Drag and diffusion,

although resulting in considerable changes to the
linear solutions, do not alter these conclusions.

Results obtained using climatological zonal flows
with real topography show that nonlinear effects

are most important at low altitudes, and that the
linearized solution is most realistic at high levels,
where the zonal flow is large, and the assumption

of a small perturbation eddy field is more nearly
satisfied.
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