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SUMMARY The Finite Element Method (F.E.M.) in conjunction with the Galerkin approach has been used to
calculate the inviscid subsonic and transonic flow of a perfect gas in axisymmetric nozzles of arbitrary

shape.
in terms of the density and velocity components.

equations, the density is approximated or updated before each iteration.
linear equations in terms of the veloeity components.
But as the flow gets closer to the choked condition,

The present method gives solutions up to the choking

few iterations to converge for low subsonic flow.
more iterations are needed for a satisfactory answer.
flow. This solution is compared with experiment.

1  INTRODUCTION

The flow of a fluld in the transonic regime is des-
cribed mathematically by highly non-linear partial
differential equationsof mixed elliptic-hyperbolic
type. No analytic solution has been obtained and
the prospect of obtaining one with our present
knowledge appears remote, thus numerical technigues
offer the only avenue for solving the equations and
obtaining useful information. During the past few
years, many numerical techniques have been develop-
ed to solve the direct transonic flow problems,
such as Finite Difference Method (F.D.M.) I[1],
Method of Integral Relations (M.I.R.) [2] andMethod
of Lines (M.0.L.) [3]. Butmost of them are either
time consuming, or encounter difficulties when
treating problems with complicated boundary
conditions, geometric shapes or singularities.

The F.E.M., which was developedin the field of
structural mechanics [4], has since found many
applications in the field of fluid mechanics due to
ease of computation and flexibility in choice of
arbitrary mesh arrangements to suit the boundary.
There is freedom of choice of element shape, size
and order of approximation to the unknown dependent
variables.

There have been many attempts to apply F.E.M. to
potential flow problems [5,6,7]. Most of these so
far, have employed the velocity potential or the
stream function as dependent variables in the full
equations of motion. Results have been obtained for
the subecritical flow case, but none have been succ-
essful for flows containing a supersonic region.
While [8] tries to simplify the differential equa-
tions in each element by a local linearization
process and subsequently iterates to a converged
solution, the method works only if the maximumlocal
Mach number is near sonic at1.07 or less. In [9],
groups of variables (pu, puz, puvj are used as
unknowns. For the high subsonic flow case, this
formulation is not successful if the Galerkin cri-
terion is employed. Nevertheless, in the present
paper, the F.E.M. is used in conjunction with the
Calerkin criterion to calculate the subsonic and
transonic flow of a perfect gas in axisymmetric
nozzles of arbitrary shape. The equations of motion
are written in terms of primitive variables:
velocities and density, and are used together with

The present formulation uses the full equations of motion and the irrotationality conditionwritten
To avoid solving the resulting non-linear system of

Thus the result is a system of
Starting from the 1-D solution, the method requires

the irrotationality condition. The density is first
approximated (by the incompressible flow solution or
1-D theory for compressible flow) and later updated
using the latest information on velocities. This
approximation leads to a system of linear algebraic
equations in terms of the velocity components, which
can be solved using standard methods.

The method iterates rapidly from the 1-D solution in
low subsonic flow but as choking is approached, more
interations are required. The homentropic field
case containing a transonic zone at the nozzle throat
has been computed.
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Figure 1 Nozzle Geometry

2 BASIC EQUATION AND ASSUMPTIONS

Let [z, r] be the cartesian co-ordinates of a point
in the flow field, V is the velocity vector with
components (w; uj in the =z and r directions
respectively and density p, pressure p. The govern-
ing equations in the steady state condition are then:

g 2,9 2
continuity: VepVr”™ = 5;{pur )4~§E{pwr ) =0 (1)
L3R, %, 2 _ g (2)
p 9z 9z or
mome?gpmjLEuleg):
p\V-V]V = -Vp 1 _‘op, .ow .-du:_
p or Vet 5z 9 (3)
entropy: p = kepY (4)
where £=0 plane flow, £=1 axisymmetric flow, v

is the specific heat ratio, k is a constant.

Assuming that there are no shock waves and that
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boundary layer effects can be neglected, we have the
irrotationality condition:

du ow| _
[‘a—a—} =

With pressure and density normalised on the stagnat-
ion values, lengths normalised on the throat half
height and velocities normalised on the maximum
velocity:

s = ﬂop_o
I Y-1I pp

combining eqs. (2), (3), (4) and (5) we have the
following relation, where p, u, w are now normal-
ised values:
1
[Lv2)

2
VxV = k

~

(5)

p = (6)

where V2 = u? + w2,

At a finite distance upstream from the nozzle entr-
ance, the flow is uniform, i.e.
3  FINITE ELEMENT METHOD (F.E.M.)

The present F.E.M. makes use of the Galerkin criter-
ion to control the error. The criterion is a means
of obtaining an approximate solution to the differ-
ential equation by requiring the error between the
approximate solutionof the current iteration and
true solution to be orthogonal to the function used
in the approximation, i.e.

J Nj*RedV = 0, for each node j in the domain
v

where R 1is the error and N; is the approximate
funetion. Generally, F.E.M. consists of the follow-
ing steps.

o the domain under consideration is divided into
smaller domains called elements. (See Figure 2).

o choose appropriate functions (shape functions) to
represent the unknowns in each element. (8ee eq.
8).

o use a certain criterion to control the error.

(see section 4).

This results in a set of algebraic equations which
can be solved numerically.

Figure 2 Generation F.E.M.

4 NUMERICAL TECHNIQUES (GALERKIN APPROACH)

If the Galerkin method is applied to egs. (1) to(4),
the result is a system of non-linear equations in
which difficulty has been experienced in obtaininga
converged solution.

To avoid solving the non-linear equations, it is
suggested that one of the dependent variables, p, u
or w be prescribed beforehand, thus rendering all

u = 0, w = constant.
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equations linear and permitting iteration to a con-
verged solution. By application of the Galerkin
approximation to egs. (1), (5) and (6), it will
become clear below that the obvious choice of the
three is the density p.

First, chain differentiate eq. (1), to obtain:

prﬂgg-+ putrf! + urlg§-+ prlgg-+ wr1§§—= 0 (7)

This equation together with eq. (5) is used to solve
for the unknowns u and w.

As usual in F.E.M., the unknown is locally approxim-
ated by a set of trial (shape) functions, i.e.

(2] smte 2]

where i 1is the ith node, Nj is an arbitrarily
chosen shape function appropriate to the ith node
and uj, wi are the undetermined parameters at nocde
i

u
w

uj
Wi

(8)

From eq. (7), because the first derivatives of p
are involved, i1t is required to interpolate for these
derivatives. From egs. (6) and (4), it can be seen
that

2
p =o',

i.e. order 5 if y=1.4. However, because in a small
element, the variation in nodal values is not large,
a low order of approximation can be used without
introducing large errors, i.e.

p = ZNi(r,2)-px (9)

k

In this paper, we will use the same order of approx-
imation for p as for u and w.

Substitution 'of (8) and (9) into egs. (5) and (7),
gives the following residuals:

oN; 5
Ry = Iug [_arirz I Nyepye + &~ Ny Z Mg
i k k
)
+r2'Ni E—;qi_li 5 pk:I
oN{ k
+ Ewy [—a—;r'q’iNka +riNg I erT pk]
aNi aN{
Rz = Zul 3% - ZWi-B?

With the assumption that the pi's are known before
an iteration, apply the Galerkin method to the above

residuals. We have:
Jf NJ-Rl-dr-dz =0

- iz 1 (10)
JJ Ns*R,+dredz = O

A

where n is the number of nodes in the domain.
Application of Green's theorem to these equations
and after some manipulation,yields



n n \
Lajiug + P bjiwi =0 j=1,n

i=1 i=l

Ec‘]-iui+ Ldyswmy =0 J=1,n

where

ONs
a33-= Epk JrR'NiNJdez -Zpy Jr'Q'NiNk —ar—Jdrdz ey

3N

by = ipk JrR'NiN Ngedr = 2 pye JI'Q'NiNk —B?']drdz
. ONj

LT i Nider- Nl—ga-drdz

o
|

oNj
Ji = NideZ"’ Ny ?drdz

Calculations of ¢33 and d;j can be carried out
once and for all using a dummy element [1l] to save
some computation time. aji and bjj can be best
calculated by numerical integration. This results
in a linear algebraic system of equations which can
be solved using the Gaussian elimination technigque.
Solving this system subjected to prescribed bound-
ary conditions, we find the velocities [u,mﬂ at
nodal points. Then we update the density field by
using relation (6). The above process is repeated
until the solution converges. The convergence
criterion presently used is that for which the
relative change in local. densitybetween two consec-
utive iterations should not be greater than a given

small number & for all nodes in the flowfield, i.e.

RORRCE
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This criterion is found to be more stringent than
the use of local velocity V.

5  NUMERICAL RESULTS AND DISCUSSION

The choice of the shape function N in the F.E.M.
must be such as to ensure continuity of the deriv-
atives across the element's boundaries. The maxim-
um order of derivatives which must be continuous is
one order less than the maximum order of derivativ-
es occurring in the finite element equations (10),
(see [10]1). With the formulation in terms of vel-
ocity components, the highest derivative is the
first. Applying Green's theorem, the derivative
terms are removed. Thus the lowest order of shap-
ing function Which can be chosen is linear, giving
a linear variation of veloeity within each element.
Obviously, quadratic or higher order representat-
ions can be used to improve accuracy but would
involve more complicated programming and longer
execution time. Inall results presented here,

linear approximation in triangular elements is used.

Calculation can be done for subsonic flow up to the
maximum (choked) flow case. As mentioned, the
density field is required to be prescribed before
each iteration. We can either start from the in-
compressible flow solution or the 1-D compressible
flow solution. We chose the latter in the cases
presented here.

The method iterates rapidly for low subsonic flow.
It takes 3 iterations to converge to-.an error

e = 0{107%)
8 iterations are needed for a medium flow (curve 2,
Fig. 3), more iterations are needed as the flowgets
closer to the choked condition, where -43 iterations
are required to converge (curve 3, Fig. 3). But

for low subsonic flow (curve 1, Fig. 3).
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Figure 3 Nozzle Wall Mach Number for Various
Mass Flow Rates

nute also that in this case the search for the max-
imum possible mass flow rate requires iteration at
the same time as density. The figure also shows the
effect of increasing the number of elements. It can
be seen that there is little difference if either 7-
nodes, 9-nodes or 13-nodes are used in the r-
direction.

Figure 4 shows the velocity field and streamfunction
contour for the case of maximum possible flow. Fig-
ure 5 shows the wall pressure distribution for the
same case. This compares very well with the exper-
imental data from [2].

&  CONCLUSION

The F.E.M. using the Galerkin approach has been
adapted to predict the transonic flow in a nozzle
of arbitrary shape having radius of curvature of 2.
Satisfactory agreement with experiment has been
obtained.
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Figure 4 Mach Number Contours
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