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1 INTRODUCTION

The problem of wave force evaluation on any marine
structure was first tackled by Morison et al.(1950)
with respect to marine piles. Their proposed for-
mula for wave force evaluation is basically empiri-
cal in nature as it relies on empirical data to
provide an estimation on the drag and inertial co=
efficients incorporated in the formula. Since then
this formula has been widely accepted by engineers.
The extensive use of Morison's equation has genera-
ted many efforts to measure these semi-empirical
parameters. As a result, there exists a glut of
published data for determining the two force coef-
ficients. Unfortunately, inspite of this wide ex-
perience there are still serious conflicts and un-—
certainties regarding the reliability of the method
as well as of the published data.

Theoretically, the drag and inertial coefficients
should be predictable respectively by means of
boundary layer and potential flow analyses., In the
present paper, we shall devote our attention solely
to the prediction of the inertial wave force com—
ponent or its associated inertial coefficient.

The calculation of the inertial wave force compon-—
ent for a vertical surface piercing cylinder stand-
ing on the sea bottom was first reported by MacCamy
and Fuchs(1954). Since then, many other solutions
have been reported for other object shapes as well
as for different states of submergence. The use of
diffraction theory exclusively in these solutions
has given rise to a school of thought which thinks
that Morison's equation should be limited to bodies
small with respect to the wave length such that the
presence of body does not modify the flow field in
which the structure is immersed. In other words,
Morison's equation precludes fluid-structure inter-—
action, and that fluid-structure interaction can
only be accounted for in diffraction models. As a
result, limits has been set on the range of valid-
ity for Morison's equation despite the fact that
diffraction solutions can always be rearranged into
a form which yield expressions for C. to preserve
the use of Morison's equation in such situations.

Viewed from another perspective, Morison's equation
represents an ad hoc extension of non-oscillatory
concepts into oscillatory flow situations. Results
to date indicate that it is adequate in all situa-
tions if the inertial force coefficient can be pre-—
dicted analytically. Obviously, in such situations
one may not see the obvious need for an empirical
expression. However, its use does convey a certain
degree of convenience in certain situations. This
will be illustrated towards the end of the present
paper. In situations in which the coefficients are
derived solely from experimental measurements, Mori-
son's equation should only be used with the same

wave theory with which the coefficients have been
evaluated from experimental data. This has been
demonstrated in CERC(1966) which shows that the use
of wave velocities and accelerations given by dif-
ferent wave theories yield different magnitudes for
the empirical coefficients. The same is obviously
true also for theoretically deduced force coeffi-
cients. The underlying difference is that theoreti-
cally deduced coefficients normally is accompanied
by a known range of validity. Such is not the case
for experimentally derived coefficients. When this
latter is used, caution must always be exercised if
extrapolating sufficiently far from the range in
which the experiments were conducted.

In what follows, we shall examine the theoretical
evaluation of inertial wave force or its associated
coefficient using the wave pressure approach and to
demonstrate that Morison's equation does confer cer-
tain advantages when use in conjunction with subma-
rine pipeline design.

2 HORIZONTAL WAVE FORCE AND OVERTURNING MOMENT
ON VERTICAL SURFACE PIERCING CYLINDER

The initial success of diffraction analysis seems to
have precluded the exploration of another approach
for evaluating the inertial wave force component.
Generally speaking, diffraction analysis is relati-
vely involved and time consuming. Its use normally
demands a level of sophistication in mathematics be-
yond the comprehension of most design engineers.
With this in mind, we shall examine the alternative
approach of inertial wave force prediction founded
on the concept of wave pressure. This latter appro-
ach has been used successfully in the past for com-—
puting wave forces acting on breakwaters.

Taking the wave pressure to be acting on the project=
ed area of the surface piercing cylinder standing en
the sea bottom, the maximum (inertial) wave force
acting on the cylinder of diameter D can be written
as n

=D ZPmaxdz
-d
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k cosh kd
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wherein the factor of 2 is introduced on the basis
that total reflection occurs at the front face of a
surface piercing cylinder.

Though the value of n is not known a priori, its
knowledge is not necessary if we are only interested
in deriving the inertial coefficient. On comparing
this to the expression for the inertial force term
from Morison's equation, which is of the form
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we arrive at an expression for CI as follows:
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It is obvious that this expression differs signifi-
cantly in form from the corresponding result deduced
on the basis of diffraction analysis, given below to
facilitate comparison:
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A plot of the results given by both (3) and (4) are
shown in Figure 1. From this, it can be seen that
relatively good agreement exists in the range for
which D/L > 0.2 between the inertial coefficients
deduced on the basis of two very different approach-
es. TFor D/L < 0.2, values predicted by (3) become
larger than the non-oscillatory limit of 2. This
non-oscillatory limit actually corresponds to the
case of L ~ @ or D/L = 0. On assuming that values
for C_ cannot be larger than the flow limit every-
where, the following distribution for C._ can be re-
commended for practical applications:

(4)

{ 2.0 for D/L < 0.2
G (5)
I
gL for D/L > 0.2
2D
m
2.2 Y
20 ™~
. 1\~k
1.8 S
A
5 16 N
E s \}
w
S 12 §§
oo )
o
o
w 08 ==
T 06 e
2 o~~~
0.4 2
P ——
0.2
0
o ol o2 03 04 05 06 07 08 03 IO
D/L
Figure 1 Comparison between exact and approxi-

mate inertial force coefficients

It can be seen from Figure 1 that (5) approximates
(4) rather remarkably over the entire range of D/L
shown.

From the above considerations, it can be seen that
Morison's equation cannot be considered to be valid
within a certain D/L range only if we allow for a
variable C_ to be introduced. However, we may say
that Morison's equation with a C. equal to that of
non-oscillatory flow is valid onfy for the range
D/L < 0.2. Now, since we have established a very
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simple closed form solution for F , the contin-
ual use of the inertial force coegficlent may seem
redundant. We may use the following formulas direc-—
tly for the dimensionless horizontal force:

Ph,max __ _ 27 sinh k(d + n)
og (D/2)% (1/2) e
for D/L < 0.2 (6a)
Fh,max _ _8 sinh k(d + n)
pg(D/Z)z(H/Z) kD cosh kd
for D/L > 0.2 (6b)

For actual design calculations in situations for
which the wave height is known, N can be set equal
to iH for the purpose of evaluating F . In Fig-
ure 2, we have compared (6) with the 2338 solution
of MacCamy and Fuchs (1954) as well as numerical re-—
sults obtained by the finite element method given by
Zienkiewicz et al.(1978). For the purpose of this
comparison, N has been set to zero since no values
have been quoted. It can be seen from Figure 2 that
the agreement between (6) and other solutions are
remarkable.
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Figure 2 Horizontal forces on a surface
piercing cylinder

The overturning moment for a surface piercing cylin-
der for D/L > 0.2 can be written as

1
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On non-dimensionalizing, (7) becomes
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For D/L < 0.2, the appropriate expression for M
is given by i
: )
e 2 11
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which can be non-dimensionalized as

M
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In Figure 3, (8) and (10) have been plotted for the
case of N = 0 in comparison with the exact solution
of MacCamy and Fuchs (1954) and numerical results
of Zienkiewicz et al.(1978). Again, remarkable ag-
reement has been achieved.
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Figure 3 Overturning moments on a surface
piercing cylinder

Though Figure 1 indicates that C_ given by both the
present approach as well as diffraction analysis
tends to zero as D/L + «, diffraction analysis act-
ually yields a zero force per unit width of projec-
ted area in this limiting condition. This is consi=-
stent with the model which takes the entire plan
form of the cylinder into consideration. As under
such conditions no surrounding fluid medium can be
present and hence no wave induced forces. The trea-
tment based on wave pressure, on the other hand,
gives a constant force per unit length, given by

£ _ Fh,max _ pgH sinh k(d + n)
h,max D k cosh kd

Efﬂ(tanh kd cosh kn + sinh kn) (11)
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On assuming that kn << 1, (11) becomes

_ PgH
%, s " tanh kd + pgHn (12)
which, on setting n = jH, yields
_ bgH 1 2
i & tanh kd + j;pgH (13)

This is identical to the formula recommended by
Nagai(1969) for breakwater design, after extensive
comparison with model test data.

3 HORIZONTAL WAVE FORCE AND OVERTURNING MOMENT
ON SUBMERGED VERTICAL CYLINDER

To pursue the validity of the present approach a
step further, the horizontal wave force acting on a
submerged vertical cylinder standing on the seabed
and its associated overturning mement are calculat-
ed using the present approach and compared to nume-
rical results reported by Garrison(1978) via numer-—
ical evaluation of Green's functions, Hogben and
Standing(1974) via boundary integrals and Zienkie-
wicz et al.(1978) via finite element methods.

For the present purpose, (1) can be modified to read

-d+

= _ n PgH sinh kh
F'h,max _J; 2meaxdz B k cosh kd (14
where h denotes the height of the cylinder. Non-—
dimensionalizing by Dg(D/Z)z(le), we obtain
Fh,max _ _8 sinh kh (15)
kD cosh kd

pg(D/2)2 (H/2)

For comparison with the numerical results reported
by Garrison(1978), we set h = {D and evaluate the
RHS of (15) for d/h ratios used by Garrison, viz.
1.5, 1.75, 2.0, 2.5, 3.0 and 4.0, Figure 4 shows a
plot of the present results superposed on to the re-—
sults reported by Garrison(1978) using two forms of
the Green's function. The equation number in the
figure refers to equations in Garrison's paper. Eq.
(3.13) represents the general form of Green's func-
tion while eq.(3.16c) the asymptotic form. From
this figure, it is seen that the present results

are generally closed to results computed with the
general form of Green's function for D/L > 0.3.
According to (15), the nondimensional force tends to
a constant limit of 4 independent of d/h for small
D/L. This obviously does not agree with the numeri-
cal results shown. However, it has been pointed out
earlier that (14) and hence (15) are valid for D/L >
0.2. For D/L < 0.2, the flow limit for C_ should be
invoked. By using (2) with the upper limit of inte-—
gration set at (- d + h) and setting CI = 2, we ob-
tain

sinh kh

= loap2 e ccal o ML
ARl e

(16)

Fh,max
which can be non-dimensionalized to yield

Fh,max _ 27 sinh kh

B an
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On using (17) for the region of D/L < 0.2 and fair-
ing the two curves at the discontinuity, the com—
plete nondimensional force acting on a submerged
cylinder sitting on the seabed derived from the wave
pressure approach is shown in Figure 4. The present
results are generally more conservative with maximum
over—estimation of the inertial wave force of about
30%. This level of accuracy is normally deemed ac-
ceptable in marine works in view of the gross inade-
quacies existing in the collection of environmental
data for inputting into the force computation.
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Figure 4 Horizontal forces on submerged cylinders

Figure 5 shows comparisons between horizontal and
vertical forces as well as overturning moments in-
duced by a progressive wave train on a submerged
cylinder predicted by the present approach and nu-
merical results reported by Zienkiewicz et al.(19-
78) using finite elements as well as Hogben and
Standing(1974) using the method of boundary inte-
grals. For the horizontal force, the same trend as
seen in Figure 4 between the present results and
numerical results is again observed.

The overturning moment for a submerged cylinder can
be derived using (7) and (9) by setting the upper
limit of integration at (- d + h) rather than at n.
On making this change, (9) and (7) yield

_ T pgHD® { . (e
Miax = % ‘cosh ¥ h sinh kh + (1 = cosh kh)
for D/L < 0.2 (18)
and
_ _PgHD {1 ) i
Myax ~ Cosh kd {k sinh kh + k2(1 cosh kh)
for D/L > 0.2 (19)

Non-dimensionalizing by pg(D/2)? (#/2)d, (18) and
(19) become respectively

M
max & o 053
Dg(D/Z)z(H/z)d cosh kd‘{d sinh kh +
Di%(l - cosh kh)} for D/L < 0.2
(20)
and
M
— Lol h/d .
pg(D/z)z(H/Z)d " cosh kd{ kD sinh kh +
D/d

————;(1 - cosh kh)} for D/L > 0.2
(kB)
21

(20) and (21) have been used for plotting the com-—
parison for overturning moment shown in Figure 5;
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The present results are seen to be some twice that
given by Hogben and Standing(1974) and Zienkiewicz
et al,(1978). This large difference between the
present and numerical results can be corrected for
if we take into account of the wave transmission ab-
ove the submerged cylinder. It may be argued, see
for instance Chue(1980), that transmission for an
infinitely long (two-dimensional) submerged break-
water of width D is given by

3 2
a-HE+o-Hd)

» 3 (22)

h h 2 7D, 2
i it ED G—E)

The correctness of (22) can be demomstrated by the
fact that for h/d = 1, x. = 0, implying that when
the submerged cylinder extends to and above the sea
surface no wave energy will be transmitted past the
cylinder. At the other limit, when h/d = 0, ¥, =1,
implying that if the cylinder is infinitesimalfy
thin, all wave energy will be transmitted past the
cylinder. Notice that both these limiting solutions
are independent of D/L. It may be pointed out. that
the deductions from (22) are opposed to that given
by John(1949) for an infinitesimally thin plate flo-
ating on the sea surface. The difference between an
infinitesimally plate lying on the surface and anot-
her on the bottom is that the former does possess
wave dampening properties as it interrupts the con-
tinuous movement of the surface undulations of the
waves whereas the latter is not expected to behave
distinctly different from the influence already ex-
erted by the sea bottom.

Using (22), the transmitted wave height at the lee-
ward edge of the cylinder is given by

1
e . )
0 =R H (23)

Assuming the transmitted wave height induces a force
opposite to that of the incident waves, it may be
shown that,the correction factor to be used;is given
by 1(2 - x?) which is equivalent to (1 + x*) where
¥_ denotes the reflection coefficient. When this is
applied to the overturning moments computed via (20)
and (21), it may be seen from Figure 5 that the cor-
rected moments are now in much better agreement with
the numerical results shown. The maximum error now
in no case exceeds 50%, with the maximum values oc=
curring where the slope of the curve is steepest.
The above correction factor is not recommended for
horizontal forces computed via (15) and (17) as this
results in an over—correction especially for the re-
gion where relatively good agreement now exists.

4 VERTICAL WAVE FORCE ON SUBMERGED VERTICAL CY-
LINDER

The submerged vertical cylinder is also subjected to
a periodic wave force on its top face. Since this
face is horizontal, the wave pressure acting on each
element of the surface is constant and the total ver-—
tical force can be evaluated as follows:

D2 pgH cosh kh (24)

5B AT 2 cosh kd

F
v,max max

o E]

which can be non-dimensionalized as

Fv,max _ T_cosh kh
og(/2)2 (m/2), . coTrkd

(25)

A plot of (25) for the case with h/d = 0.3 and D/d =
0.6 as a function of }kD is shown in Figure 5, toge-
ther with numerical results reported by Hogben and
Standing(1974) via boundary integrals and Zienkie-
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Figure 5 Horizontal and vertical forces and overturning moments on a submerged cylinder

wicz et al. (1978) via finite element methods. The
agreement between (25) and the numerical results is

excellent.

5 INERTIAL COEFFICIENTS FOR SUBMARINE PIPELINES

It has been shown in §2 that the surface piercing
cylinder solution taken to the limit of D/L + =
yields the correct force per unit length for surface
piercing breakwaters. The same procedure can obvio=
usly be applied to (14) to yield the force per unit
length on submerged structures resting on the seabed.
This is given by

= Fh,max _ pgH cosh kh

fh,max TITED k cosh kd (26)

A class of submerged structures of particular impor-
tance in recent years is the submarine pipelines.
(26) should be applicable to both partially embedded
and unspanned submarine pipelines lying on the sea-
bed. Taking first the latter situation, the height
of the pipeline above the seabed is equal to D, the
pipe diameter. Thus, the force per unit length act-
ing on the unspanned submarine pipeline is

_ pgH cosh kD
h,max k cosh kd (27)

In the practice for submarine pipeline design, the
Morison equation has often been used, together with
some empirically derived inertial coefficients. The
use of the Morison equation has caused much contro-—
versy in that the force coefficients, usually assum—
ed to be constant, have indicated quite a large sca-
tter. For the use of the Morison equation, a refer—
ence acceleration must be defined. If the mean ac-
celeration over the projected area offered by the
pipeline resting unspanned on the seabed is used, it
may be shown that the inertial coefficient in con-
junction with {27) is given by

I TFZD

o (28)

which is the same as (3) deduced earlier for a sur-
face piercing cylinder standing on the seabed. This
expression should be restricted to D/L > 0.2 since
it tends to infinity as D/L + 0. It is therefore
necessary to also limit the application of (27) to
p/L > 0.2, For D/L < 0.2, C_ = 2 should be appli-
cable. The foregoing discussions indicate that (26)
should also be restricted to situations for which

h/L > 0.2,

In the case of a partially embedded submarine pipe-—
line, it can be shown that for a depth of embedment

e
G, LA (29)

L e
I 2'1'5(1 vy

=

if the entire cross—sectional area of the pipe is
used in evaluating the volume in Morison's equation
instead of just using the portion protruding above
the seabed. The reference acceleration is again
taken as the mean acceleration over the projected
area. The use of the entire cross-sectional area in
computing the volume represents no approximation as
in the final force relation after C_ is back-substi-
tuted into Morison's equation the volume in the in-
ertial force term and the volume incorporated into
the CI expression cancel each other out. This as-
sumption is made solely for the purpose of keeping
(29) in a simpler form as well as to avoid referen-—
cing to handbooks for expressions for the volume of
a partially embeded cylinder. (29) should be appli-
cable to D/L > 0.2(1 - e/D). For D/L < 0.2(1 - e/D),
CI should be kept constant at the flow limit of 2.

6 CONCLUSION

The wave pressure approach for calculating wave for-
ces and overturning moments has been shown to yield
adequate engineering results for cylinders standing
on the sea floor, irrespective of whether the top of
the cylinder stays submerged or protrudes above the
sea surface, It was further shown that the results
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for the surface piercing cylinder gives the correct
limit for a vertical wall extending above the sea
surface as D + », This was taken as the basis for
extending the submerged cylinder results into situa-
tions simulating a submarine pipeline lying unspan=
ned or partially embedded on the seabed.
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