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1 INTRODUCTION

The drag of spheres in creeping motion through non-
Newtonian fluids may reflect both shear-thinning and
elastic properties of these fluids. Most aqueous
polymer solutions exhibit both types of properties
but to very different extents. The literature on
sphere motion through such fluids has been reviewed
by Acharya et al (1976). While constant viscosity,
weakly elastic fluids, such as silicone oils, have
been known for some time, fluids of nearly constant
viscosity and showing large elasticity have only
recently been described by Boger and Binnington
(1977). These two groups of fluids have more re-
cently been used for a study of elastic effects in
creeping sphere motion in the virtual absence of
shear-thinning (Chhabra et al 1979/80).

The effects of shear-thinning alone are not so easily
isolated from those of elasticity because it is not
possible to demonstrate conclusively that elasticity
is absent from aqueous polymer solutions. This leaves
some uncertainty in sphere fall results obtained in
"inelastic" shear-thinning polymer solutions. The
use of the power law to describe shear-thinning
behaviour adds additional uncertainties. New results
and a discussion of theories using the power law are
presented in this paper.

Highly shear-thinning and elastic fluids are readily
prepared and have been used to investigate the com-
bined effects of these properties on sphere motion
by Acharya et al (1976) and by Sigli and Coutanceau
(1977). Recently some success was achieved in pre-
dicting these effects by using the Carreau viscosity
equation to describe fluid behaviour (Chhabra and
Uhlherr, 1980).

Thus, the effects on sphere drag in creeping motion,
of elasticity alone, shear-thinning alone and the two
in combination are summarised in this paper.

2 CONSTANT VISCOSITY ELASTIC FLUIDS

The influence of fluid elasticity on the drag co-
efficient of a sphere in creeping motion was allowed
for empirically by Chhabra et al (1979/80), by
writing

Cl= (24/Re )X (1)
where X_ is a correction factor to account for the
deviation of the drag from the Stokes value. Re_ is
the usual Reynolds number based on the Newtonian or
zero shear viscosity. 1In the absence of shear-
thinning X is a function only of a Weissenberg
number We arbitrarily defined as 26V/d with & the
Maxwellian fluid relaxation time. The variation of
X with We for. all values of Re in the range
1?7x10'5 to 8.1x1072 is shown ift Figure 1l.: The
results cover more than four decades of We from
1.66x10~% to 6.37. For We<0.l there is no signifi-
cant reduction in drag due to elasticity while for
We>0.1 the drag decreases significantly below the
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Newtonian value as We increases. For We>0.7 the
drag becomes constant again but at a value of only
~74% of the Newtonian drag. The constant drag
region We<0.l can be identified with low levels of
elasticity such that the fluid behaviour is second
order and the relaxation time is shear independent.
This behaviour was observed with three silicone
fluids as well as with two separan/corn syrup solu-
tions at low shear rates. It is broadly in agree-
ment with theoretical perturbation solutions using
viscoelastic constitutive equations. These solut-
ions, all limited to low levels of elasticity, pre-
dict only very slight reductions in the drag below
the Stokes value. The progressive reduction in
drag for We>0.1 corresponds to increasing deviation
of the first normal stress difference from a quad-
ratic dependence on shear rate; ie increasing de-
pendence of relaxation time on shear rate. This
behaviour was observed with seven separan/corn syrup
solutions at shear rates outside the second order
region, including the two solutions mentioned above
for which results extended into the second order
region. Thus overlap of results was obtained using
two chemically very different groups of fluids.

3 SHEAR-THINNING ELASTIC FLUIDS

Bird (1965) has suggested and Abdel-Khalik et al
(1974) have shown that constitutive equations con-
taining a characteristic time parameter should, in
principle, be capable of representing both shear-
thinning and elastic effects without recourse to
independent measurements of normal stress. The vis-
cosity equation proposed by Carreau (1972) is a four
parameter equation containing an explicit time para-

meter.

(-n)/(n ) = 1+ o’ 102 )
where A is a characteristic fluid time, the power n
has the same value and significance as the power law
flow behaviour index in the shear-thinning region,
and n_, n, are the zero shear rate and infinite
shear rate viscosities respectively.

The viscosity n_ is difficult to measure, and can
usually be omitted since n_<<n _, or the viscosity
of the solvent can be used as Suggested by Abdel-
Khalik et al (1974). The authors have used the
Carreau viscosity equation with the stream function
of Wasserman and Slattery (1964) and a variational
printiple to obtain X, defined in the same way as
Xe in Equn (1). The drag correction factor X was
calculated as a function of dimensionless fluid
time A(=2AV/d), which is analogous to the Weissen-
berg number, the power law index n and a ratio of
viscosities (ngy-n_.)/ng. ' The result was compared
with experiments using a wide range of chemically
different polymer solutions, and agreement was
found to. be excellent, as shown for a typical case
in Figure 2. Ten test fluids were used, having
0.40<n<0.81 and 0.33<A<19(s), and correction
factors X down to 0.1 were observed and predicted.
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Fig. 1: Drag correction factor for creeping sphere
motion through elastic, constant viscosity
fluids.

A comparison of predicted and measured values of X
for all fluids is shown in Figure 3. Agreement is
generally better than * 7.5%. In addition, values
of first normal stress difference could be predict-
ed which were in reasonable agreement with direct
measurements in steady shear using a Weissenberg

rheogoniometer. Bird's assertion appears to be
well justified by these results.
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Fig. 2: Drag correction factor for creeping sphere
motion through a Carreau model fluid.

It should be noticed that elasticity alone produces
a maximum reduction in drag to 74% of the Newtonian
value, while the combined effects of elasticity with
shear-thinning produces a reduction in drag to 10%
of the Newtonian value for very similar levels of
elasticity (in terms of We based on Maxwellian
relaxation time) and with the same definition of
Reg.

4. INELASTIC POWER LAW FLUIDS

Shear-thinning inelastic fluid behaviour is often
described by the power law beacuse of the simplicity
of this model. Frequently also zero shear viscosity
is difficult to measure and so a more realistic
fluid model cannot be used. Despite the severe
limitations of the power law in describing regions
of a flow field where the shear rate approaches
zero, it continues to be applied to the problem of
creeping sphere motion. It has not yet been de-
termined over what proportion of the sphere surface
this fluid model breaks down. Presumably if the
areas of the sphere surface about the front and
rear stagnation points and the volume of fluid far
from the sphere do not contribute significantly to
the total drag of a sphere, then a power law
description of the flow field may yield an accept-
able result for the drag.

4.1

Many authors have presented approximate solutions
for the creeping motion of a sphere through a power
law fluid and a good review of the area has been
given by Acharya et al (1976). All solutions rely
on different stream functions arbitrarily chosen
only to satisfy the equation of continuity and the
required boundary conditions and to contain a de-
pendence on the power law index n. Most authors
also applied a variational principle which allowed
them to replace an a priori dependence of the
stream function on n by an arbitrary parameter for
which the dependence on n was to be determined. In

Theoretical Solutions
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Fig. 3: Comparison of experiment with predictions
for creeping sphere motion through ten
elastic shear-thinning fluids modelled by
the Carreau viscosity equation (Chhabra,
Uhlherr. 1980).
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Fig. 4: Comparison of theoretical solutions and
experimental data from the literature for
X as a function of n.

this case, because of the minimization of energy
dissipation rate, the resulting solutions are upper
bounds on the drag. Seven solutions are compared in
Figure 4. This figure shows a plot of X(n) given by
CpRe/24 where Re is the usual power law Reynolds
number, d"2-Mo/K. Only Tomita (1959) and Acharya
et al did not employ the variational principle and
their solutions are not upper bounds on the drag.

In addition, the latter authors introduced further
approximations to allow them to give a closed form
solution. One of the solutions included in Figure 4
was obtained by the authors using a stream function
first proposed by Ziegenhagen (1964). This choice
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was based only on the fact that this stream function
had not previously been used with the power law; it
offers no particular advantages over other stream
functions. The solution of Nakano and Tien (1968)
was obtained for flow about Newtonian fluid spheres
and the result shown in the figure is that for an
infinite viscosity ratio of the internal to the
external phase. Wasserman and Slattery (1964) in
addition to supplying an upper bound for the drag,
also galculated a lower bound based on another
variational principle employing a trial stress pro-
file. This lower bound was corrected by Mohan
(1974) .

Figure 4 shows the strong dependence of the drag
correction factor on the choice of stream function.
Since none of the solutions are rigorous, nor in-
deed can possibly be so because of the limitations
inherent in the power law, the choice of the best
result must be based on experiment.

4.2

Sphere fall tests were carried out in twelve shear-
thinning polymer solutions having 0.40sn<0.95 as
well as in three Newtonian fluids. The solutions
were well described by the power law over a wide
range of shear rate, encompassing the ranges of
average shear rate (calculated as 2V/d) generated
by all the spheres used. All the solutions were
inelastic, in that normal force was not measurable
under steady shear with an R16/19 Weissenberg rheo-
goniometer. In two of the solutions, normal force
just became measurable at shear rates above 180 and
280 5“1, which are very much higher than the shear
rates generated in these fluids by any of the
spheres used. Certainly in all cages the Weissen-
berg number was much less than 10‘3, and in view of
the results for purely elastic fluids, elasticity
can be assumed to be absent from the results under
discussion here. Such uncertainty concerning the
presence of elastic effects will always be
encountered with aqueous polymer solutions.

Experimental Results

Terminal velocity under gravity was measured for 20
different spheres (1.59<d<12.69 mm; 1190sp,< 16600
kgm's). The data were corrected for wall effects
by carrying out the measurements in five or more
cylinders having different internal diameters, and
extrapolating the velocity to a zero value of sphere
to tube diameter ratio (Turian, 1967; Chhabra et
al, 1977). All the usual precautions required by
such experiments were observed (Chhabra et al, 1978/
80; Chhabra and Uhlherr, 1979, 1980) and the
results showed excellent reproducibility and
accuracy; in the case of Newtonian fluids,
deviation from the Stokes drag coefficient was less
than *2%. The results of the measurements are
included in Figure 4. It must be observed that a
single point in this figure represents an entire
curve Cp(Re,n).

Also shown in Figure 4 are experimentzl results
reported in the literature. A large amount of
scatter is evident and no entirely satisfactory
explanation for this can be given. Most of the
earlier authors did not characterise the elastic
properties of their solutions. That these solutions
were, in fact, elastic can be inferred from report-

ed information of polymer species and concentrations.

Only Acharya et al (1976) and Uhlherr et al (1976)
fully characterised their solutions, showing that
normal force was not measurable even at the

highest shear rates generated by the falling
spheres. For the results of other authors, elastic
effects cannot be excluded as the cause of the
scatter. The different treatment of wall effects
by different authors may also be reflected in the
scatter of the results, although the errors intro-
duced are probably small.
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The picture that emerges of creeping sphere motion
through inelastic power law fluids is entirely un-
satisfactory - from both the theoretical and the
experimental aspect. We consider that the new ex-
perimental results reported here are among the most
reliable to date from the point of view of complete-
ness of fluid characterisation, terminal velocity
measurement and wall correction. They indicate that
the first approximation solution of Slattery (1962)
shows the best agreement for 0.8sng<l.0 and that
Tomita's (1959) solution gives the best description
of the drag for 0.4<n<0.8. Uhlherr et al (1976)

had previously reached the same conclusion for n>0.8.

4.3

The surface average shear rate for a sphere can be
readily calculated from any stream function. Diff-
erent stream functions give different results, and
Stokes stream function leads to y of 2V/d. Not all
the stream functions under discussion give this
result when n 1; those of Tomita and of Wasserman
and Slattery do not, and give 1.33 V/d and 1.736 V/d
respectively. These solutions therefore cannot be
expected to accurately describe the flow field in
the Newtonian case. That they lead to X=1 at n=1 is
perhaps due to a compensation through the pressure
drag term for deviation from the Stokes friction
drag. Measurements of total drag tend to be in-
sensitive to effects in the flow field and measure-
ments of velocity distributions would be prefereable.
These are, however, difficult to obtain close to the
sphere surface, where the most important changes are
expected. Sigli and Coutanceau (1977/78) have
reported visual observations of the flow field about
a sphere. They were concerned mainly with the
effects of elasticity on the flow field relatively
far from the sphere surface and no results are
reported with which the validity of a stream
function could be directly tested.

Average Shear Rate

The power law Reynolds number dnvz'np/K arises
naturally through non-dimenstonalising the variables.
This Reynolds number, like that based on zero shear
viscosity, is independent of shear rate. It may be
preferable to use a Reynolds number based on an
average apparent viscosity which could conceivably
better reflect the influence of shear-thinning vis-
cosity on the drag. This Reynolds number Ke is
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Fig. 5: Comparison of the present experimental
results in terms of X with the theory of
Tomita (1959), corrected by Wallick et al.
(1962) .



given by dVp/n, where n is obtained at the surface
average shear rate. A drag correction factor can
be defined empirically as X, given by CpRe/24.

This is tantamount to introducing a correction
factor directly into the equation for drag force
in the Stokes law regime for a Newtonian fluid

F, = 3mdvm X (3)
The correction factors X and X are related by a
shear dependent multiplying factor, the value of
which is a function only of n, and which can be
calcualted for any stream function. For example,for
the stream function of Tomita 7 is 1.33 V/n2d and

X/X is (n2/1.33)1_n. The main disadvantage of this
entirely empirical approach is that theoretical
solutions can nolonger be compared on a single plot
of X(n) since each solution is now based on a
different Reynolds number; solutions can only be
compared in pairs. Similarly, experimental results
can be compared with only one theoretical solution
at a time in terms of its particular X(n) definition.
This comparison was carried out for the present
experimental results and each stream function from

the literature, and it was found that slight improve-

ments in agreement could be obtained. Maximum
deviations were reduced from as much as 30-40% to
20-30% in most cases. However, for the case of
Tomita's solution the procedure produced excellent
agreement with the experiments over the whole range
of n from 1.0 to 0.4. This is shown in Figure 5.
This result may well be fortuitous in view of the
shortcomings of Tomita's solution mentioned above,
and it is not suggested that this solution gives
the best description of the flow field. However,
it is suggested that it gives the best macroscopic
description of sphere drag in inelastic power law
fluids for 0.4<n<1.0.

The fact that all but one of the solutions employing
variational principles and resulting in upper bounds
for the drag give values of X smaller than Tomita's
has yet to be explained. It may simply be due to
the inadequacy of the power law in describing the
flow field so that no theoretical solution based on
this model can ever rigorously predict sphere drag;
agreement with experiment must always be fortuitous.
Nevertheless, once one solution has been identified
that adequately describes the results of a large
number of macroscopic experiments, this solution
should be useful for predictions over the range

for which it has been tested. If Tomita's solution
is used in this way, it must be remembered that the
presence of fluid elasticity beyond the second order
region will influence sphere drag and so produce
deviations from any predictions using the solution.
The deviations appear to be always towards smaller
drag.

5 CONCLUSIONS

la Elasticity in the second order region produces
no measurable reduction in sphere drag below the
Newtonian value.

1b For creeping sphere motion through constant
viscosity elastic fluids, the maximum drag reduction
is to 74% of the Newtonian value.

2 When shear-thinning viscosity and elasticity are
present simultaneously, drag may be reduced to 10%
of the Newtonian value. Accurate predictions of
the drag correction factor can be obtained using

the Carreau viscosity equation combined with the
stream function of Wasserman and Slattery.

3 If the power law must be used for the description

of creeping sphere mtoion and the power law Reynolds
number is used to calculate the drag coefficients,
Tomita's theoretical solution gives the best value

of total drag for 0.4xn<0.8 and Slattery's first
approximation solution is best for 0.8<ngl.0, pro-
vided that the effects of fluid elasticity are
absent.

Agreement with Tomita's solution can be further
improved by the arbitrary use of a surface average
apparent viscosity.
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