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SUMMARY An approximate analysis was made of the cross flows produced in the free jet formed by the flow of
liguid through a plane, elongated, orifice. The analysis required that the width of the orifice be an
order of magnitude less than its span, that the lips of the orifice should follow a smoothly varying curve,
and the ends of the orifice should be sharply pointed. It was found that substantial residual cross flows
remained in the jet far downstream of the orifice, and these were such as to cause the jet to converge in

the plane of the orifice span.
1 INTRODUCTION

Nozzles which produce fan shaped liquid sprays
employ a variety of differing internal configur-
ations. (12 A common configuration is shown in
fig.l It is formed by taking an axisymmetric duct
and, at the crown of the duct, making a vee-shaped
"slash" with a grinding wheel, or similar tool.
The resulting nozzle opening is an elongated slit,
of varying width which, in principle at least, has
sharp ends. The contour of the plane of the slit
is curved, with the curvature determined by the
interpenetration between the "slash" surface and
the original duct contour. It is desirable to
develop methods for predicting the mass flow dis-
tribution in the spray produced by such nozzles,
as this will make it possible to design them to
generate given spray distributions.
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Figure 1 Spray nozzle configuration

The flow distribution in the spray fan is determined
by the direction of the flow as it leaves the nozzle
and therefore in predicting the spray distribution,
it is necessary to consider the factors which govern
the flow direction. As the width of the nozzle
orifice changes along its length, the dimensions of
the pressure field associated with acceleration of
the liquid through the nozzle must also change.

This implies that there will be substantial cross-
wise preséure gradients at the nozzle, tending to
impart a component of velocity tangential to the
local plane of the orifice.

A theoretical analysis is undertaken to explore this
effect for a plane orifice. This is shown in fig.2.
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Figure.2 Flow through plane orifice
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The analysis requires that the width of the orifice
be an order of magnitude less than its span, that
the orifice lips should follow a smoothly varying
curve, and that the ends of the orifice should be
sharply pointed. The orifice is formed in an
infinitely thin flat plate, and co-ordinate axes
X, y, z are chosen, with corresponding velocity
components u, v, w as shown. It is convenient to
consider the flow field as two adjoining regions,
respectively upstream and downstream of the plane
of the orifice, and to analyse each region inde-
pendently. The two regions are joined by matching
velocities at the orifice.

2 THE UPSTREAM REGION

The flow in the upstream region is analysed by
treating the flow through the orifice as a dis-
tribution of elemental line sinks, aligned parallel
to the "y" axis. One such sink is shown in the
figure, located at a distance, x, from the centre
of the orifice, and occupying an interval, dx, of
the "x" axis. The aim of the analysis is to cal-
culate the cross flow velocity, u, at a point on
the "x" axis which is a distance "a" from the
centre of the orifice.

The length of each sink is taken as the width of
the orifice, 2h, at the station "x" at which the
sink is located. It is assumed that the sink
strength distribution is uniform over the length of
each sink. An analysis of the effect of a linear
distribution of strength over the length of the
sink indicates that the error in velocity at "a",
resulting from the assumption of a uniform sink
strength distribution, is of O(qﬂx-ayz. Provided
that the width of the orifice varies slowly with x,
it can then be shown that an error of this magni-
tude has a negligible effect on the crossflow
velocity, when the total effect of all the sinks is
taken into account.

The crossflow velocity on the "x" axis, at a, is
taken as the crossflow velocity over the width of
the orifice. BAnalysis showed that, for a single
line sink, the error involved in making this
assumption was again of 0(@/(x—a))2, and that the
effect of the error on the total crossflow velocity
due to the complete sink distribution, again was
negligible.

The contribution of the elemental line sink at x to
the crossflow velocity at "a" may be written as

W
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T

(x-a) {(x-a;2+h2};’

where WD = wwc/Zh is the mean velocity through the
+h
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orifice, with wwo = wdy
=h

Upon integration, eq.(l) yields the total crossflow
velocity, u, as

W
0. hdx
= J (2)

(x-2) {(x-g%+n2}

where s is the semispan of the orifice. Putting
h=f (x) , and expanding f(x) as a Taylor series about
a, i.e.
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eq. (2) becomes
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To perform the integrations in this series, it is
noted that, in the denominators of the integrands,

h makes a significant contribution only when (x-a)
Ah, Since h varies only slowly with x, this

implies that, for the integration, it is sufficient-
1y accurate to put h=const (=£(a)) . Then, inte-
grating term by term, and taking |h/(s-a}}<<l, the
velocity is
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3 THE DOWNSTREAM REGICN

The flow in the downstream region is analysed by
noting that the fluid is assumed to be inviscid,
and that the flow is irrotational. Thus the

vorticity is zero everywhere, and this fact may be
exploited to write

u _ dw
X 9x
or g +g
du aw
= dy = J pY dy (4)
-9 -g

where g is the semi width of the jet in the "y"
direction.

Now
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where the subscript "g" signifies velocities at the
surface of the jet. Thus, writing

+g +g
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eq. (4) becomes
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and, integrating with respect to z, this becomes
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where wuo is the value of ¢u at the orifice.



Tc obtain an expression for the last term on the
right hand side of eq. (5), note that u<<w, and
therefore the resultant velocity at any point may
be written as

9.7 YWZ‘HJ".

Then, since the surface of the jet is a constant
pressure surface, g is constant there, and there-

fore
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derivatives at the surface.
Eg. (6) may be rewritten as
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Because the vorticity is zero everywhere
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sl o _fewv] 2
[Bs] B [BSJ ax ' (8)
g g
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where Wm is the velocity of the jet far downstream,
which is equal to g at the surface of the jet.
Now, v is the "y" component of g, and so

v_ = sin ©

W
g =]

where tan & = 3g/dz is the slope of the surface in
the "y-z" plane. Substituting into eq.(8), and
integrating, a relation for ug is obtained, i.e.
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Passing far downstream in the jet, to where g = g
and using

00'

U.D=

(W, = Vo) /29,
to denote the mean crossflow velocity imparted to
the flow as it passes along the jet, eg.(5) may be

written £
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where u_ is given by eq(9).

In order to evaluate this expression, the contour
of the jet boundary must be specified. Since the
width of the orifice changes slowly with x, it is
assumed that the boundary of the jet in any "y-z"
plane is identical with that of a two-dimensional
flow from a slit, of half width egual to the half
width, h, of the orifice at the corresponding
value of x. The contour of the boundary of a two
dimensional jet is given by

= 2b ; i
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Eg. (10) may now be developed by writing
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and then putting
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and changing the variable of integration in the
second term by substituting dz = dg.tan 6, to

obtain
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Substituting for sin® and z from egs.(ll) (i) and
(11) (ii) respectively, and performing the required
integration, yields
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The last term on the right hand side of eq.(10) may
be obtained by using eq.(11) (i) to substitute for
sin 6 in eq.(9), leading to
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Substituting from egs.(12) and (13) into egq.(10),
and noting that

go/qm =1+ 2171,
eg. (10) simplifies to

ag

—_— _—o_
uD/Ww = 0.186 0.635 uog/WM'

% (14)

By obtaining uog from eq.(3), and noting that W_ =
(1 + 2ﬂ'1) W, this expression can be evaluated to
yield up. !

4 RESULTS AND DISCUSSION

Calculations have been performed for a family of
orifices of sinusoidal shape, and the results are
presented in fig.3.
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Figure 3 Cross flow velocities in orifice flow

It can be seen that uD, the mean crossflow velocity

imparted to the flow downstream of the orifice, is
much smaller in magnitude than uo, the crossflow

velocity induced upstream of the orifice. Since u
is negative, and the net downstream crossflow is

the sum of uy and ugr this implies that the flow

will retain a negative crossflow component far
downstream of the orifice and therefore, the jet
will converge in a plane parallel to the major axis
of the orifice. Of course, as the convergence
develops, the assumption of gquasi two dimensional
flow in the "y-z" planes will become increasingly
invalid, and so the present analysis then will not

apply.

It may be noted that curves have been presented for
values of € up to 0.4. For this value, the width
of the orifice is not small compared with its span,
and the assumptions of the analysis are not valid.
However, the curves provide a qualitative in-
dication that relatively large crossflows can be
expected under these conditions.

Although the analysis has been developed for a
plane orifice it seems plausible to apply it to the
curved orifice of fig.l, provided that the nozzle
width is small, not only in relation to its length,
but also in relation to the radius of curvature of
the surfaces forming the interior of the nozzle
duct. Under such circumstances, the analysis may
be expected to provide a useful first approximation
in predicting nozzle spray distributions.
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