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1 INTRODUCTION

The zero Froude number approximation to low Froude
number flows simply assumes that the free surface
remains straight at all times. Analytical solut-
ions can generally be found in cases where the flow
field contains a certain type of wall boundaries.
For the presence of more complicated wall boundar-
ies, the numerical solutions are comparatively
simple. The zero Froude number approximation seem
reasonable since the free surface elevations for
such flows are usually very small. However, such
approximation is over simplified when considering
that the kinetic energy trapped locally by the
presence of a floating or a submerged obstacle.
Hence the added mass of the obstacles derived in
this way may not be a good estimation to the real
situations.

The presence of an obstacle in an otherwise
uniform flow, generates two types of free surface
waves : One propagates down stream of the

obstacle. It is of order F_2 exp (—F-z) where
F is the Froude number (Lamb 1932). As it
represents the transfer of energy down stream to
infinity and so the obstacle experiences the wave
pattern drag. The second type of free surface
wave is caused by the blockage of the obstacle.
These waves occur near to the obstacle and travel
with it. They disappear rapidly with distance
away from the obstacle. The wave height and
velocities related to this type of waves are of
order F2, They contribute to the added mass of the
obstacle but exert no force on it.

In this paper, the solution of low Froude number
flows assume the disappearance of the first type
of waves and only retains the structure of the
second type. This allows the free surface
condition to be expressed as an integral equation.
The solution for zero Froude number is introduced
into this equation and a power series in F2 which
satisfies both the free surface and the rigid wall
boundary conditions can be generated.

2 NOTATION

semi axis of ellipse; coincides with
calm free surface

b : semi axis of ellipse; normal to calm
free surface

D : reference length of obstacle; for
ellipse: D=a+b

F : Froude number; F =T (g D)_!'ﬁ

g : acceleration of gravity

h : free surface elevation

M : added mass of object

n : direction normal to the line of integration

s : direction tangential to the line of
integration

U : reference velocity; velocity of free
stream or velocity of an object

u : non dimensional horizontal velocity
component on free surface

v : dintegral operater; equations (6), (11)
and (19)

v : non dimensional vertical velocity component
on free surface

X : horizontal coordinate

y : vertical coordinate

z : complex variable z = x + 1y

A : a parameter : A = (a - b) (a + b)-1

a : complex variable: equation (9)

¢ velocity potential

: complex variable; equation (8)
3 FORMULATIONS

The following analysis assumes that the Froude
number is small and steady state is achieved in
the flows. All variables are non-dimensionalized
using the reference velocity U which is generally
referred to as the velocity of the free stream and
the reference length D which associate with the
geometry of the obstacle.

The presence of an obstacle in an otherwise uniform
flow field, the horizontal and vertical velocities
components along the free surface may be expressed
as :
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where F is the Froude number.
The component ug is the zero Froude number solution

which assumes that the free surface is a straight
stream line and upon superposition with the free



stream velocity, satisfies the rigid boundary
condition on the obstacle. The velocity compon—
ents in the second and higher order of Froude
number are denoted by u; and vi. It will become
evident that u and v are series in even power of F.

Let h be the elevation of the free surface. For a
steady flow, the linearized free surface condition
is :

h == F%( up + F?u;)
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The kinematic condition of the free surface is
given by :

(1+uo+F2u1)'g—§=F2V1 ¥ owoer )

Now equations (3) and (4) are combined to eliminate
h and yields

vi=-(1+u+Fou; ) ( %%L
du
+H =) 2 (5)

It is now possible to relate u; and vy by the
potential theory which is commonly used in thin
aerofoil theory (Cheng & Rott 1954), that is :
uy =V (v1) ante (6
The integral operator V depends on the geometry
of the obstacle. Thus equation (6) contains the
free surface condition and also the rigid wall
boundary condition. The key to the solution of
(6) lies in the construction of the operator V.
For once it is known vi in (5) and (6) are replaced
by the following :
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The value of u; can now be solved as a series in
F? : that is, the first term of u; is derived from

ug

the known function ugp and 3% ° Further terms in

higher order of F? are obtained by repeat substitu-
tions of the current solution of u; into equation

n.
4 APPLICATION TO FLOATING ELLIPSES

As an illustration to the method of solution using
the above analysis, the obstacle is an ellipse
floating on the free surface. The diameter along
this axis is 1 + A and the vertical diameter is

1 - A. This parameter A varies from -1 to +1
according to the eccentricity of the ellipse.

4,1 Evaluation of ui and h;

Consider the conformal transformations as shown in
figure 1 : the ellipse in the z-plane is trans-
formed into a circle in the {- plane, by the
relation :

s ienpin =L cesd, ®

This is followed by the transformation of the free
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surface into the interval ( -1,1 ) along the real
axis of the 0- plane :

g=—2%

e w  69)
g? + 1
By considering the Z- plane, the zero Froude
number solution is found to be
o A o o o (10)
gz - A

The operater V may be constructed from the o-
plane: Along the real axis, the vertical velocity

component Vi gg-vanishes.outside the free surface
interval (-1,1) since this is the boundary of the

ellipse. The singular integral formula related
to finite
1 dz
= vy ey o) dd .
ok wdz][ c-a' o
-1

where the Cauchy Principal value of the integral
has to be considered whenever ¢ lies within this
interval (-1,1).

It is evident that V can now be identified.

The first term of u; is calculated from the sub-
stitution of up into equation (7). From the value
of uo and uy, the components of free surface
elevations given in (3) are obtained. The typical
values of hyp and h;, corresponding to A = 0 which
is a floating circle, are plotted in figure 2.

Note that these elevations are symmetrical and only
the symmetrical half are shown. This symmetry
also implies that no force is exerted on the
ellipse so long as the velocity of the free stream
is constant. However as energy is trapped

around the ellipse and this energy increases with
respect to the increase of free stream velocity,
the effect of this type of free surface waves is
important in the studies of quasi-static flows.

4,2 The Added Mass

The added mass of the ellipse is calculated from
the energy associated with its motion in a still
fluid medium. The velocity potential ¢ correspond
to the flow given in equations (1) and (2).

¢ =x+ ¢+ F - (12)
where ¢o is the zero Froude number solution and ¢,
is associated with the velocities component vi and

Vie

The non dimensional added mass M for an obstacle

such as the ellipse is given by

5 a¢r d s
on

where the contour of integration consists of the
free surface and all rigid wall boundaries and

M=-1¢ (13)

the derivative a¢r is in the direction normal
on
to this contour. The velocity potential ¢r is
given by
6. =¢-x
= ¢o + F2¢, el (18)
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Figure 1 Conformal transformations
of an ellipse in the z - plane

The substitution of equation (l4) into equation
(13) gives :

M=o §¢o
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For a floating ellipse considered here, the first

term of (15) is equal to half of the added mass
5

(15)
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Figure 2 Components of free surface
elevations hg and h; in the
neighbourhood of a floating
circle centered at 0.;0)

10.
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Figure 3 Components of added mass
Mo and M; of ellipses plotted
against A

for a submerged ellipse moving in the direction of
one of its axes. Denote this as My and :

My = - }¢o%§g ds

Let the contribution to the added mass by the
calculated first term of uj; be Mi go that (15) is
approximately

%(1-;\)2 e« C18)

M =M, + F2M, e . (A7

The values of Mg and M; for A varying between -1
and 1 are plotted in figure 3. The contribution of
M; is progressively large as ) approaches -1 where
the ellipse is degenerated toward a vertical flat
plate. For example, 1f F = 0.3, the ratio of

F2M; (A= -1) to Mg(A=-1) is approximately 1.25.

On the other hand, where A is near to 1.0, the
ellipse is practically a horizontal straight line
section on the free surface. In this region the
value of M; approaches a simple function of A
given by

1-2

Mp(A=1)=

. (18)
By comparison with the value of My given in
equation (16), it is evident that the ratio M1/M°

approaches an infinity large value as A approaches
1 That is, the added mass in this region is
dominated by the higher order term.

A NOTE ON APPLICATION TO FLOWS WITH
SUBMERGED OBSTACLES

5

The analysis given in Section 3 can be applied to
submerged obstacles. In contrast to floating
obstacle as discussed in Section 4, the rigid wall
boundary does not come in contact with the free
surface. Thus the region bounded by the free
surface and the obstacle is not simply connected.
The technique using conformal transformation to



deal with the boundary condition discussed above
cannot be applied. A numerical approach is to
represent the submerged obstacle and its image
reflected above the free surface by doublet
distributions. The zero Froude number solution
ug can now be found and the operator V in equation
(6) is simply :

V(vi) (19)
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The series solution can be applied in the same
manner.

6 CONCLUDING REMARKS

The formulation of free surface equation to include

rigid wall boundary condition is given in Section

3. For low Froude number flows the series solut-
ion can be applied and is illustrated in Section 4.

The results show that the added mass of a floating
ellipse is significantly larger than that given by
zero Froude number approximation when the Froude
number is between 0.05 and 0.3.

The method of solution can be generalized to solve
floating obstacles of more complicated shapes.
Instead of equation (8), a transformation function
is required to map the shape of a given obstacle
into a circle. From this, the zero Froude number
solution up can be derived and so allows the
series solution to be applied.

There are various methods for transforming certain
types of shape into a circle. For example those

applied to shipshape contours (Macagno 1968) (von
Kerczek and Tuck 1969) and to square or triangular
shapes with round contour (Wittrick 1960). The
generalization of this type of transformation has
been discussed (Kantorovich and Krylov 1964).
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