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SUMMARY
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il INTRODUCTION

Standing gravity wave problems are more difficult
to analyse than are steady wave motions, such as
the classical Stokes progressive wave, because of
the complications introduced by their time depend-
ence. Nevertheless, approximate small-amplitude
expansions have been found for many cases of inter-
est: two- and three-dimensional waves on a fluid of
finite and infinite depth; composite waves of more
than one fundamental frequency; interfacial waves
in multi-layered fluids; and, effects due to
surface tension. A survey of these and other
standing wave problems may be found in the review
articles of Wehausen and Laitone (1960) and
Wehausen (1965).

In the present work we take a fresh look at the
most fundamental standing wave problem: the two-
dimensional, simply-periocdic, irrotational motion
of a perfect fluid in an infinitely deep and
laterally unbounded ocean. In contrast to the
progressive wave case, an existence proof for
standing waves has not yet been found. In addition,
there remain doubts as to the form of the highest
standing wave profile.

Finite amplitude deep-water standing waves were
first investigated by Rayleigh (1915) who obtained
a third-order solution in an assumed small-amplitude
expansion. Two important features of deep-water
stationary waves become apparent in the first few
orders: the maximum elevation of the surface above
the mean water level exceeds the maximum depression
below it, and the frequency of the wave motion is
decreased by an increase in wave amplitude. In
the most ambiticus effort to date, Penney and Price
(1952) carried the perturbation expansion to the
fifth order. They found that there is no time
during the period of the wave motion when the free
surface is perfectly flat (a fourth order effect).
Even more surprising, they concluded that the crest
of the highest wave has a right-angled nodal form
in contrast with that of the greatest stable trav-
elling wave for which the nodal angle is 120°.
These predictions were later confirmed experiment—
ally by Taylor (1953) who, while he doubted some

of the underlying assumptions of Penney and Price's
theoretical analysis, nevertheless believed their
results to be correct.

The use of Eulerian coordinates, as employed in the
above theoretical studies, .involves the application
of a nonlinear boundary condition on a free surface
whose location is initially unknown. A consider-

able amount of labour is involved in "transferring"

A method of time-dependent conformal mapping is introduced to simplify the power series solution
procedure for time and space periodic standing waves.

Wave profiles are computed by use of rational

The convergence properties of the series are also discussed.

this boundary condition to the unperturbed fluid
level. In a Lagrangian coordinate system, on the
other hand, the location of the free surface can
be assumed to be known; additional complexity
arises from the satisfaction of the continuity and
irrotationality conditions, however. In this
paper, we will employ a third method, which appears
to combine the advantages of the other two schemes.
It is a direct adaptation of the conformal mapping
method described in Whitney (1971). Here we seek
a time-dependent mapping z(Z,t) which maps the
fluid region in the physical or z-plane onto a
prescribed, time-independent, domain in the Z-plane.

2 MATHEMATICAL FORMULATION

The region of the physical or z-plane occupied by
the fluid at each instant of time t is mapped

onto the lower half f-plane according to the trans-
formation

z=x + iy = z({,;t;€) L)

is a parameter that subsequently will be
identified with the wave height and 7 = & + in
The free surface corresponds to n = 0 (see Figure
1). We introduce the usual complex velocity
potential £ = ¢ + il and the complex velocity

where €

vy z-plane

One wave cycle in the puysical
and transformed planes.

Figure 1

w = df/dz = u- iv. Henceforth, upper-case letters
will denote the direct function dependence of these
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quantities on and t:

c

F(z,t) = & + i¥ = £(=z(g,t),t)
Ww(g,t) = U - 1iv  w(z(Z,t),t) (2
W, F and =z are related by
F
L L o
_dz_zg 62

where subscripts signify partial differentiation.

The kinematic boundary condition states that the
normal component of fluid velocity (U,V) of a
particle occupying a point on the surface is equal
to the normal component of the surface velocity

(% ,y;) at that point.
Noting that (-y..,x ) is a normal vector to the
surface, we obtain

Im{Fr - zrzt} =0. on nr=0, (4)

where use has been made of (3) and the bar signifies
complex conjugation.

The pressure p at any point in the water, in the
z-plane, is given by the Bernculli equation

B=pPo
P

Here @ is the density, g the acceleration of
gravity, and pp the atmospheric pressure which
may, without loss of generality, be set equal to
Zero. On the free surface, the dynamic boundary
condition states that p = pp - Thus

She ¢t - Lww - gy (5)

¢t+1;wv'e+gy=o (6)

on the free surface. We reguire equation (6) in
terms of Z-plane variables evaluated on n = 0.
Only the velocity potential term involves special
treatment. From (2) we have

F Fas rif s aip £l ¥z
t t z t t t
By substituting the real part of this expression
into (6), the dynamic boundary condition becomes

o, + LWW + gy - Re{w z,b=0 on n=0. (7
Proceeding now to dimensionless variables, we choose
as a characteristic length the wavelength A and

as a characteristic time the unknown periocd T .

Let

an Pl
A P
be the wave number and frequency for the standing

wave motion. We define the dimensionless variables

k

and W

.
w

& =i

z=kz, t=wt, F (8)
We make the substitutions indiczated by (8) in (3)
and the surface conditions (4) and (7). After
dropping the tildes, (3) and (4) remain uncharged,

while (7) becomes

o +WW+Sy-R{Wz}=0 on n=0 (9
where the frequency parameter S is defined as
k
s=3—2 (10)

If the wave number k 1is considered to be fixed,
then the frequency w, and hence S, will have to
be determined as one of the unknowns of the problem.

The dependent functions
to be analytic in T

Zy B,
and t

and W are required
in the lower half
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The depth of the water is assumed to be
consequently we require

plane.
infinite;
Z i 4l W =050 B O vas: i 2 (11)
to ensure that the disturbances vanish far beneath
the surface. The analytic and periodic reguire-
ments,together with (11), imply that the functious
may be represented by Fourier series of the form

o0
ok a e P (12a)
p=0 P
e s
wes 4t PR T (12b)
P
p=0
F = E e (12¢)
p=0 F

where we have chosen the n-axis to be a line of
symmetry.

The coordinate y(&,t) is the vertical displace-

ment of a point on the surface. We introduce €
as the half-wave height by requiring
2e = y(0,0) - y(m,0) . (13)

The required solution has the property that when
€ is very small, the surface profile is simply
periodic in space and time with frequency and wave
number both equal to 2m. That is

y = € cos x cos t + 0(e?). (14)

Insertion of expansions (12) into (3),(4) and (9)
reveals that it is sufficient to assume a Stokes—
type expansion; that is

65
a = nZn ahlep+m (15a)
B nfﬂ B gha s
el n:fo *{W b (15¢c)
and s=1i# T o " (154)

=]
-

where the doubly-subscripted elements are (necess-
arily periodic) functions of time and 0, are
constants to be determined.

After equating coefficients of like. powers of edw
and €, a system of recurrence relations is obtained
with the usual property that the unknown elements

at any stage are determined, in general, by prev-
iously computed elements of lower order. A similar
set of relations was obtained by Schwartz (1974) in
the analogous series solution for the progressive
wave. There, however, the relations were purely
algebraic while in the present problem the relations
can be shown to be of the form

o +pa =R (16)
pn P pn
with similar expressions for B, and Y, - The

right side of (16) is a time-periodic function of
lower order coefficients.

In general, a sufficient assumption for the form
of the coefficients is

p+in
PRgR ]
. = 1. & cos (p+2n-28) t. (17)
P 2
=0
The expansions for the £ and Y array elements,
compatible with (17), are sine series. Here []

signifies the "integer-part” functiocn.



The general solution to (16) is the sum of a comp-
plementary and a particular solution. The part-

icular solution is determined by o i the homo-

geneous solution is determined by the time period-
icity requirement. When p is not the square of
a positive integer, the homogeneous solution

cxpﬂ cos@ t
must be discarded because its frequency is an
irrational multiple of the fundamental. When p
is a perfect square, on the other hand, an arbitr-
ary choice of 0O, would seem to be permitted.
This is not so, however, for an incorrect choice
of Cng will "force" an unacceptable secular term
of the form

t cos Vg 4 (18)

This problem first arises in
the calculation of Gug . Unless Qi is corr-
ectly prescribed, 041z will contain a term of the
form (18). Similar situations occur for p=9,16,
etc.

at higher order.

No direct physical criterion has been found for
specifying these homogeneous coefficients. The
procedure, therefore, involves an initially arbit-
rary choice for a given coefficient, whereupon the
computation proceeds in order to determine whether
the resulting secular term has been suppressed.
Fortunately examination of the recurrence relations
reveals a linear relation with known slope between
the resonant term in Ron and the preceding homo-
geneous coefficient. Thus only two passes through
each "loop" are required.

The order of procedure is shown schematically in
Figure 2. The overall progression is in the order

aAbBcC.. .

The dotted lines and upper-case letters indicate
resonance-suppression loops.

3 DISCUSSION OF RESULTS

The algorithm described in the preceding section
has been coded in FORTRAN ard run to 0(825) on

a CDC 6400 computer. Double precision results

(29 significant figures) for the three arrays

“mm 'Bpnw and Ypne required a run time of about
4 minutes. The time required for a run of given
total order M is roughly proportional to ME.
This 25th-order solution involves the determination
of about 5000 coefficients.

Through order ES, the series coefficients can be
recognized as rational numbers from their decimal
expansions. The coefficients a, in the trans-
formation equation (l2a) are

B 1o 134_1214‘ 3
ap = - 287+ g3f (Eﬁ —at Jcos 2t + EZE cos 4t
AT B 132467 s “ll 3. 150X.g
a1 milesae™ ey . | OB EhlngiEtt T gl cos: 3t
e
+ ;Eggﬁ cos 5t
as = %gz-%%e“+(%£2-%£“)cos 2t - é%%ﬁ" cos 4t
: (19)
9.5 1883 5 3.3 _ 4649
nt s TR T
27193
EoLas & GOF Ok
ay = gt ééﬁ“ cos 2t + éﬁk cos 4t
635 548 215 53 125 5
as = I§§E cos t + i§§€ cos 3t + 3gat  cos 5t &

358

0 0 a b c
1 a a b c
2 a # B
f
3 i) f:
e e
4 - ! A
L sddBad
Ik 1 II
1 |
S A Bt
Ir.' :.'I
1
6 A B
P
7 b C
"
b ghe
/
S
9 ? ;
L
10 C/
i/
1
11 C

Figure 2 Schematic computation procedure

The frequency parameter has the expansion
_ gk _ Lo B 1008 6 8
S = Bz S Lok EE ﬁ& m‘:‘. 0.61083%¢e
- 0.063683eY - 0.1344050e'* - 0.238688¢™

- 0.543657e'® (20)

- 1.24212e'® - 2.72405e%® - 6.00315¢%
= 13. 74162 =

From (19) we can immediately draw an important
conclusion: there is no instant of time at which
the free surface is perfectly flat. It is most
nearly flat at t=7m/4 £t nTyn=1,2,... . At
these values of t (l2a) becomes

=5 Sl 23 —Qif__ 1. -4it 6
zZ =0T + i€ (me Ee ) + 0(g”)

which, on the free surface [ = £, gives immediately

23

112 (el)

cos 2x - = cos 4x) + 0(e®).
48
Penney and Price (1952) have previously determined
that the surface is never flat and therefore
concluded "that strictly periodic oscillations of
finite amplitude cannot be generated by impulsive
pressures applied to the initially flat surface of
water at rest". Their solution corresponding to
(21) would seem to be incorrect; in particular
their result gave 1/7 as the coefficient of
cos 2x in (21) and the cos 4x term was absent.
This error was undoubtedly caused by the improper
choice of a homogeneous term at the fourth order
which gives rise to a secular term at B(e®).Since
their solution was only carried to 6(e%), they
were not aware of this fact.

= g“(

At this point it is necessary to determine to what
extent the series (12) are convergent. By exam-
ining the ratios of successive coefficients in the
expansion

z(E,tie) = E+ ) Z (E,t)e" (22)
n=1 + B

it is possible to estimate the limiting value of €,
€* say, for fixed values of & and t . This
procedure involves the use of a type of graphical
ratio test which, if a certain degree of internal



consistency is present, can accurately predict the
nature and location of a limiting singularity in a
series expansion. Such tests were performed for

a number of values of & with ‘'t = 0, corresponding
to points on the highest wave profile for given E.
€%, in general,is a complex number whose magnitude
and argument are functions of IZES Thus the series
(22) is not uniformly convergent. The maximum
value of |e*| for which the series converges for
any value of & is 0.30 corresponding to a wave
height/length ratio of 0.095. This is surely not
the value of |E*| for the highest possible wave
but it does indicate that a method of analytic
continuation is required to "sum" the series. For

£ = 0,e* is a real number; thus this value of €*
should correspond to the highest possible wave.
Although this €* cannot be estimated especially
accurately, it is almost certainly in the range

‘0.6 to 0.7, corresponding to wave-height to length
ratios between 0.19 and 0.22. The experiments of
Taylor (1953) yielded values for this number between
0.22 and 0.24.

A simple method of analytic continuation which is
appropriate here involves recasting the original
series (22) in the form of rational fractions

(Padé Approximants) . While the original series
will only converge within a circle of radius |€*|,
the sequence of rational fractions may be expected
to converge in a much larger domain whose extent

is limited primarily by the location of the non-
polar singularities of =z(g). Here we use only
those rational fractions where the numerator and
denominator are of the same order (diagonal Padé
Approximants) . From the original 0(e®) solution,
therefore, we can obtain a sequence of 13 fractions,
for any values of &, t, and € corresponding to
ratios of polynomials with order increasing from

0 to 12. These new sequences will usually converge
rapidly if |E*—E| is not very small.

Figure 3 shows three wave profiles computed for

t = 0 and values of € equal to 0.4, 0.5 and
0.6. The e-values for each profile are suffic-
iently high that straightforward summing of the
series would fail in each case. The sequence of
Padé Approximants on the other hand converges to

at least 5 places for € = 0.4, 4 places for

€ = 0.5, and about 3 places for € = 0.6. For

€ = 0.65 (not shown), the convergence is poor and
for still larger values of £, the profiles could
not be considered to have converged at all. The

€ = 0.6 profile has a maximum slope of 32.2° at

x = 0.33. It is interesting to note that the slope
does not decrease monotonically from that point
but has a second (relative) maximum of 32.0° at

x = 1.0. The maximum slope for the € = .65
profile can be estimated to be between 43° and 45°
and occurs quite near the crest. It seems guite
likely that the highest standing wave has a sharp
crest with a 90° included angle, as predicted by
Penney and Price. We suspect, however, that the
maximum profile slope may slightly exceed 459, '3
similar effect for the progressive wave has recently
been revealed by the meticulous calculations of
Longuet-Higgins and Fox (1877).

Figure 4 shows the free-surface shape for € = 0.60
at various times from t =0 to Tm/2, the quarter
period value. Notice that the surface is not flat
at t = T/2, the maximum displacement being about
0.004\ at x =T/2. For T/2 < t < T, the profiles

profiles shown, but in reversé order.
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Figure 3 Maximum wave zrofiles for 3 values of €
%

will be left-right reflections of those shown and
for m < t < 2m, the surface will merely assume the
The shape of
the nearly-flat profile, at t = m/2, is not well
represented by equation (21) which is not surprising
in view of the relatively large value of € .

. I 1 L L
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x

Figure 4 Surface profiles at

various times, £ = 0.6
Penney and Price (1952) argue that the deceleration
at the crest cannot exceed g in magnitude. This
conclusion is undoubtedly correct and can be
rigorously established without appeal to physical
intuition. In terms of [-plane variables, this
condition yields the inequality

ﬂ +820 at t=0 and ¢ =0 (23)
By writing the left side of (23) as a series in g,
recasting as a sequence of rational fractions, and
seeking the value of € for which equality is
satisfied, we obtain € = 0.67. This number is
consistent with our earlier estimates.
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