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SUMMARY :
shapes is presented.
tracted a mesh in automatic fashion.

1 INTRODUCTION

Computational algorithm development for the solution
of nonlinear transonic and other fluid dynamics
problems is advancing at a rapid rate. These algor-
ithms typically are of finite difference/finite
volume/finite element type, all of which require

the construction of an ordered field mesh of points
or cells prior to carrying out the hosted calcula-
tions (hereinafter, the terminology "hosted calcula-
tions" is used to refer to any such algorithm,

which uses a field mesh of this type). A major
factor 1imiting the extension of today's transonic
computational algorithms to general three-dimension-
al applications is the problem of constructing a
suitable field mesh.

In two-dimensions the problem is comparatively
simple, and the approaches used have involved (1)
conformal mapping to a geometrically simple domain
wherein the mesh is easily constructed by hand, and
(2) the solution of a vector valued Poisson equation
relating physical and computational variables as
pioneered by Thompson (1974). But even with these
methods, 2-D mesh generation becomes complex when
dealing with multi-element airfoils and other multi-
ply connected geometries. Approaches used in three-
dimensions have mostly been extensions of these
two-dimensioned types, as in the work of Jameson

who used a rather complicated mapping of very
1imited generality, and by investigators who have
applied Thompson's 2-D method in a series of cross-
section planes. These, to date, have not produced

a mesh generation capability that can satisfactori-
1y handle cases involving geometrically complex,
three-dimensional flows.

2 REQUIREMENTS

What is needed is an automatable, simple-to-use
mesh generation scheme with enough control options
to produce a mesh containing the global and detail-
ed characteristics wanted for the particular appli-
cation at hand. Control can be of two types, name-
1y (1) direct interactive control by a person who
renders a judgement on the "goodness" of a parti-
cular mesh pattern based on his forecast of the
global features of the yet-to-be solved hosted
calculation, and (2) automated control triggered

by error analysis criteria associated with the
hosted calculation algorithm such that the mesh

can be changed during the solution of the hosted
calculation in response to the discretization
errors that emerge. The control requirement, from
either source, implies the ability to first
establish a mesh and then to change it appropriate-

A scheme for generating an ordered field mesh of points or cells about arbitrary geometrical
Panel method technology is used to solve a boundary value problem from which is ex-
Grid modifications and topological features are also discussed.

1y without undue labor or chronological flow time.
It also implies a capability to display a mesh in
such a way that a user can ascertain its character-
istics (this is not a trivial problem in three
dimensions). And finally, the mesh must be of
orderly character so as to be compatible with the
1ogica1 sequences of a hosted computational algor-
ithm.

3 APPROACH

3.1 Basic Method

In the present approach, a field mesh in a pre-
scribed domain is extracted from the solution to a
Tinear boundary value problem associated with La-
place's equation in that domain. The user need in-
put only the boundaries of the domain, which in a
typical aerodynamics problem is comprised of the
aircraft surface plus some far field boundary. The
far field boundary position is selected to be com-
patible with whatever far field solution algorithm
is to be used in conjunction with the hosted near
field computational algorithm. Panel method tech-
niques (Johnson and Rubbert, 1975), originally deve-
loped for the solution of incompressible flow prob-
lems, are used to solve a boundary value problem
from which is extracted, in automatic fashion, a
complete mesh subject to simple controls executed by
a user.

As a first example, we pose the problem of generat-
ing a two-dimensional mesh about an airfoil, to be
used in a transonic, finite difference method flow
analysis. Desirable characteristics of the mesh are
that: (1) the mesh density on the airfoil surface
and wake should be greatest at the leading and
trailing edges (regions of large gradients) and per-
haps in the region where shock wave development is
anticipated, and (2) the mesh should decrease in
density away from the airfoil boundary as the grad-
ients in the flow field attenuate. The boundary
value problem selected as the basis for generating
such a mesh is shown in Figure 1. It is easily
solved using the referenced panel method. The solu-
tion is stored for subsequent extraction of the mesh.

The basis of the present method is to fabricate the

Ustreamlines" and equipotential surfaces.

88

mesh as the intersection points of prescribed

(The word
"streamlines" might better be replaced by "lines of
maximum potential gradient" since these are not
streamlines in the conventional sense of following
an airfoil surface.) The controls used to fabricate
the desired mesh are the following: (1) the circum-
ferential mesh spacing about the airfoil surface and



wake are prescribed directly by the user to satisfy
whatever spacing criteria is desired on these sur-
faces. (2) The radial, or outward spacing is pre-
scribed by specification of a tabulated set of val-
ues of ¢ lying between ¢7 , the airfoil surface
value, and ®p, the value prescribed at the outer
boundary. Control of this radial spacing is pro-
vided by the relative spacing given in the table
values; thus, if dense radial spacing is desired
near the airfoil surface, the elements input to the
¢4 table (i=1,...,n) should be bunched together
near the value ¢
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Figure 2 Automatically generated mesh
Figure 2 displays a mesh generated by this means.
It displays the desired characteristics of mesh
spacing, and is comprised of a logically simple,
rectangular array of mesh points. In viewing the
results it is apparent that the process produced,
in automatic fashion, a "good" mesh from a very
simple set of input data, with very little effort
by the user.

In this and other examples to be given in this
paper, the total number (global density) of mesh
lines displayed is fewer tnan would normally be
used to perform a hosted calculation. This is ade-
quate to demonstrate the method and the grid and
was done to avoid visual smearing of closely-spaced
grids in dense regions.
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The approach used above is equally applicable in
three dimensions. In Figure 3 is shown a portion
of a surface. The user prescribes a two-dimensjon-
al mesh pattern (s, t variables) on the surface in
accordance with his relevant mesh spacing criteria.
He sets up a boundary value problem analagous to
that of Figure 1, solves it using a panel method,
and prescribes a table of ¢, values to dictate the
outward (n variable) spacing in complete analogy
with the two-dimensional case. Streamlines are
then calculated that emerge from the s, t intersec-
tions and travel in the n direction. Points along
the streamlines where they pass through the tabula-
ted @5 values are identified as mesh corner points,
thus completing the definition of the mesh as an
ordered set of (s,t,n) coordinates.

STREAMLINES GOINGTO
OUTER BOUNDARY

n COORDINATE

PORTION OF A SURFACE

N
PRESCRIBED SURFACE
MESH PATTERN

Figure 3 Portion of a three-dimensional mesh
3.2 Simple Grid Improvements Not Affecting the
Logical Ordering of a Mesh

There is no a priori guarantee that a mesh thus pro-
duced will display all of the desired characteris-
tics, so additional degrees of control are needed.
Figure 4a shows a mesh thus calculated about a
nacelle which displays some deficiencies. One de-
ficiency is that the outward, or n, spacing is too
coarse in the region near the surface between the
points S; and Sj shown in Figure 4a.

This is easily cured as follows. A new table of 9
values is prescribed along the streamline emanating
from S: in the n direction to produce a more dense
mesh spacing in n near the nacelle surface. A
smooth interpolation function (a number of these
can be built into the code) is then applied between
the original n variable spacing (the original table
of ¢4 values) emanating from S; and the new spac-
ing (the new ¢;table) prescribed along n emerging
from S.. The result is the mesh shown in Figure
4b, an“obvious improvement.

A second type of control, not yet implemented, may
at times be desired to alter the lateral spacing of
adjacent n lines away from the surface. In Figures
4a,b the n lines appear to be bunched too closely
together in the region in front of the inlet. This
type of control can be achieved by the addition of
source-type Poisson terms to the linear differen-
tial equation being solved.



Figure 4a A deficient mesh about a nacelle

Figure 4b Improved radial mesh distribution

at the inlet

3.3 Grid Modifications which alter the Logical
Structure of the Mesh

Even with the types of controls described in the
previous section, it is not always possible to con-
struct a "good" mesh comprised of only a single
rectangular array of cells. There will be a re-
quirement in many cases to sub-divide the domain
into multiple regions such as illustrated in Figure
5. The present approach provides a ready means for
generating meshes within each such reduced domain.
In some cases it can be done simply by addition or
deletion of grid Tines. In other cases, it will be
desirable to set up a separate boundary value prob-
lem, analogous to that of Figure 1, in each reduced
domain.

A decision to subdivide the domain into multiple
regions imposes additional requirements on the
hosted computational algorithms. They must be able
to correctly "match" or transmit the hosted compu-
tation across domain boundaries where the grids do
not interface in a one-on-one fashion. This is a
problem to be addressed in the context of the host-
ed computational scheme and is thus beyond the
scope of this paper. (Several procedures (Magnus
and Yoshihara, 1970 and Chen, Dickson and Rubbert,
1977) for matching or transmitting solutions across
domain boundaries have been used successfully with
transonic finite difference problems.)
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3.4 Topological Features

Other features that must be dealt with, particular-
ily in three-dimensional mesh generation, are those
imposed by the topological character of the bound-
ary surfaces. It can be proved that the closed
surface of a non-toroidal three-dimensional object
cannot be covered everywhere by a simple, rectangu-
lar surface grid. The grid must exhibit "poles"
(as at the poles on a world globe), or other non-
standard "topological" nodes at one or another
points on the surface. Those spatial grid points
lying along a streamline emanating from a surface
topological node in the present scheme will form a
spatial topological "node line", a line of grid
points whose relation to their neighbors differs
from the usual. This, in turn, imposes an added
requirement on the logic of the hosted computation-
al algorithm.

In order to minimize the complexity of the hosted
algorithm logic it is desirable to minimize the
number of types of topological nodes that must be
provided. The approach used in the present method
is borrowed directly from the yet-unpublished work
of Dr. Lawrence Dickson and associates of The
Boeing Company, who are carrying out research in
the area of analytic surface description and loft-
ing. Their approach embodies the use of only two
types of topological surface nodes, namely triang-
ular and pentagonal. Figure 6 illustrates the two
node types. In the present method of spatial grid
generation, the streamline emerging from the cen-
ter of a node would form a spatial node 1line where
three or five surrounding grid cells meet instead
of the usual four.

It should be noted that, unlike the topological
nodes on a surface, the spatial "topological Tine"
is not inescapable. It arises from the character
of the present grid generation scheme which re-
quires the surface to be an equipotential surface.
Figure 7 illustrates a simple case containing sur-
face topological nodes in which a spatial grid
could be constructed (but not by the present scheme)
that would not contain spatial node Tines; such a
grid is sketched in the figure.
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Figure 6 Topological nodes

A second type of topological phenomenon occurs in
multiple-body problems. Figure 8 illustrates a
mesh generated by the present method for the prob-
Tem of two airfoils. Note the occurrence of two
five-sided cells which are shaded in the figure.
The Tocation of such odd cells and the global char-
acter of the mesh can be adjusted at will by chang-
ing the boundary conditions, but the presence of

such cells must be accounted for in the logic of ;
the hosted algorithm. They could be eliminated in
this case by setting the potentials of the two air-
foils equal to one another, but the resulting mesh
grid would not be a desirable one for transonic
finite difference computations.

Subdivided domain

Figure 5
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Figure 7 Regular spatial grid with surface
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Figure 8 Topological cell in a multiple

body problem
4 CONCLUDING REMARKS

The problem of generating an ordered field mesh of
points or cells about arbitrary geometrical shapes
has been addressed. The viewpoint taken has been
that the method of mesh generation must be auto-
matable and easily controllable by a user having
an a priori conception of what constitutes a "good"
mesh. The approach used was to generate the mesh
as the solution to a Laplace boundary value prob-
lem, a simple, automatic process with today's

panel methods. The conclusions reached were:

1. Mesh generation must be treated as an iter-
ative, interactive process wherein a mesh is
generated and displayed, judgements rendered,
and modifications commanded, executed and

displayed until a mesh judged to be satis-
factory is produced.

2. The present method provides the ease-of-use
and flexibility necessary to (a) generate a
"fipst cut" mesh displaying most, and some-
times all of the characteristics desired,
and (b) to perform commanded mesh modifica-
tions improving the character of the mesh.

3. In many cases a simple rectangular mesh is
unsuitable for the entire domain; the domain
must be subdivided into multiple sub-regions,
each containing a rectangular mesh with in-
terfaces along the subregion boundaries.
Phenomena requiring subdivision include:

(1) Geometrical shapes requiring subdivi-
sion to achieve desired mesh densi-
ties.

(i) The topological character of the body

surface geometry and the requirements
for surface mesh layouts to follow
the natural lines of the object.
Topological surface nodes create top-
ological lines in the mesh field in
the present method.

(iii)

4. The requirements of the preceding paragraph
imply a close coupling between mesh genera-
tion options and the logical structure of the
hosted computational algorithm. The two are
interwoven! It is clear that the hosted
computational algorithm logic must be struc-
tured to handle the logical irregularities
imposed by the character of the mesh.

Most multiple body problems.
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