6th Australasian Hydraulics and
Fluid Mechanics Conference
Adelaide, Australia, 5-9 December 1977

Shear Induced Coagulation

R. W. O'BRIEN
Department of Applied Mathematics, Institute of Advanced Studies, Research School of Physical Sciences,
Australian National University

SUMMARY The rate at which colloidal particles coagulate in a suspension may be increased by stirring the

suspension.

This phenomenon is known as shear induced coagulation.
of a dilute suspension of spherical particles in a steady shear flow.

In this paper we study the coagulation
The rate at which single particles

come together to form doublets per unit volume of suspension is calculated for "high" shear rates at which
the Van der Waals attraction between the particles only affects the nearly-touching pairs.

1 INTRODUCTION

The addition of salt to a colloidal suspension
reduces the electrical repulsive forces between the
suspended particles, and if sufficient salt is
added the particles may coagulate under the influ-
ence of the Van der Waals forces of attraction.
The ease with which colloidal particles may be re-
moved from the suspension increases with particle
size, and thus the processes for the removal of
colloidal impurities from a liquid begin with the
addition of salt to the suspension. For most of
the industrial purification processes, the liquid
is stirred after the addition of the salt, for the
stirring increases the rate at which particles
coagulate.

In this paper we study the shear induced coagula-
tion phenomenon for the case of a dilute suspension
of spherical particles in steady shear flow. The
particles have uniform radius a and we assume that
the electrical forces between the particles are
negligible.

In the initial stages of the process, most of the
coagulation takes place between single particles
which unite to form "doublets'. Our aim is to
derive an expression for the "coagulation rate' C
defined as the number of doublets formed in unit
volume of suspension per unit time.

2 THE FACTORS WHICH AFFECT THE COAGULATION RATE

In order to describe the coagulation process in a
suspension, it is convenient to introduce the con-
cept of a "pair space'. Each pair of spheres in a
chosen unit volume of the suspension is represented
by two points (x,,X,,x3) and (-x;,—x;,—X;) in pair
space, where X,,x, and x, are the cartesian compo-
nents of the vector which passes from the centre of
one member of the pair to the centre of the other.
The points in pair space are obtained by placing
the axes shown in figure 1 at the centre of each
sphere in turn and noting the coordinates of every
other sphere in the volume. If n denotes the num-
ber of particles in the volume, there are n(n-1)
points in pair space.

The points which correspond to coagulated pairs lie
on a sphere of radius 2a, centred on the origin in
pair space. This sphere will be referred to as the
"central sphere'". The number of points which move
onto the central sphere in unit time is double the
coagulation rate, since each pair of spheres is
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counted twice.
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Figure 1 The cartesian coordinate system

The density of points in pair space is denoted by
D(E). In the absence of any long range order in
the suspension we have

p(x) + o’ D
as |x| = =. In other words, the fact that there is
a sphere at the origin does not affect the probab-
ility of there being another sphere in the unit
volume about x, provided |x| is sufficiently large.

We assume that the system is in a quasi steady
state, i.e.
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Although the number n of single spheres decreases
with time, we assume that the time over which n
changes appreciably is much longer than the time
required to achieve steady-state conditions.

As mentioned earlier, the coagulation rate ¢ is
equal to half the number of points which move onto
the central sphere in unit time, and since

%% = 0, cis given by

e = %?( 102) (=Y dA (2)
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where 1 is the flux density of the points X, 4 is

a closed surface surrounding the the central sphere,
and n denotes the unit normal directed

into the volume enclosed by 4. The flux density i
may be written as

i e p(¥' + V"), (3)



where ip is the flux density due to the Brownian
motion of the particles, V' is the velocity of the
points ‘due to shear flow (i.e. the velocity
of the centre of one member of a force free sphere
pair relative to the centre of the other sphere),
and V" is the velocity due to the Van der Waals
force.

The ratio |~B(x)|/|p(x)v (x)| is proportional to
kT/ua K, where k is Boltzmann's constant, T is the
absolute temperature of the system, U is the solvent
viscosity, a is the particle radius and K is the
shear rate. If kT/ua®¢ << 1, the Brownian motion

of the particles may be neglected and the expression
(2) for the coagulation rate becomes

]
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In the work that follows the Brownian motion of the
particles will be neglected.

The ratio |V' (x)l/IV"(x)l is proportlonal to pa’k/A,
where A is the HamaKer constant, a parameter which
appears in the expre551onforthe Van der Waals force.
This force increases as the particle separation
decreases and becomes infinite as the particles
touch. Thus if

uadk

>> 1, (5)

the Van der Waals forces only affect the motion of
nearly touching pairs. This observation consider-
ably simplifies the problem of determining ¢, and
for the remainder of this paper we shall assume
that the condition (5) is satisfied.

Thus the Van der Waals forces only affect the motion
of pairs which lie in a thin layer surrounding the
central sphere. We let L denote this layer.

Pairs which lie outside L move as force free pairs.
The motion of such pairs has been thoroughly inves-
tigated by Batchelor and Green (1972a). In the
following section we shall briefly describe the
relevant results of their work and in §4 we show
how the coagulation rate ¢ may be obtained by com-—
bining Batchelor and Greens results with expressions
for the relative trajectories of the nearly touching
pairs which are affected by Van der Waals forces.

3 THE MOTION OF FORCE FREE PAIRS

Batchelor and Green obtained expressions for the
relative trajectories of sphere pairs in shear

flows. Some of the trajectories of pairs which lie
in the plane of the shear flow (x,=C) are illus-
trated¢ in figure 2.
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Figure 2 The trajectories of force-free pairs in
the plane of the shear flow
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The quantity R, which appears in this figure is the
x, coordinate of the trajectory at points far from
tﬁg central sphere. From figure 2 it can be seen
that trajectories are "squeezed together" near the
top of the central sphere; pairs which move along
trajectories such as the R /a = 1 trajectory shown
in figure 2 pass very near®to the central sphere
and only a slight force of attraction is required
to cause these pairs to coagulate.

Also from figure 2 it can be seen that there is a
region of closed trajectories surrounding the cen-
tral sphere. The quantity R, associated with
trajectories in this region is imaginary, and pairs
which move on these trajectories execute closed
orbits about each other.

4 CALCULATING THE COAGULATION RATE

If A/pa’ is small (but non zero), pairs move
through pair space on trajectories such as those
shown in figure 2 until they pass into the region L
in which the Van der Waals forces are significant.
While moving through L each pair is drawn closer to
the central sphere. If a pair does not coagulate
on passing through L it leaves on a different force-
free trajectory to the one on which it entered L.
Those pairs which leave L on a closed trajectory
will eventually coagulate, for they will be drawn
closer to the central sphere each time they pass
through L.

We have assumed that the density of points in pair
space does not vary with time, and therefore the
coagulation rate is equal to the number of pairs
which enter L from outside the region of closed
trajectories in the half space x, > 0 and eventu-
ally become attached to the central sphere.

To translate this into a mathematical expression we
take the surface 4 which appears in the expression
(4) for ¢ to be that part of the surface L which
lies outside the region of closed trajectories
together with the part of the boundary of the
region of closed trajectories which lies outside L.
This surface is illustrated in figure 3.

Tha part of the
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lies above the region
of closed trajectories

The boundary of

% the region of closed trojectores

Figure 3 The surface 4

The pairs which lie outside L are approximately
force-free and therefore pairs cannot cross 4
through the part of the surface formed by the bound-
ary of the region of closed trajectories.

Those pairs which coagulate enter 4 through a por-
tion of the surface denoted by I'. This region is

shown in figure 3. The pairs which cross I either
become attached to the central sphere (correspond-
ing to pairs which coagulate on their first encoun-
ter), or they pass out of L and into the region of



closed trajectories.

The coagulation rate is equal to the rate at which
pairs pass through T', i.e.

c (6)

J pV'.ndA.
i

The distribution function p at a point in pair space
is determined by the history of the motion of the
pairs which arrive at that point. Pairs which

cross ' come from a region in which the Van der

Waals forces are insignificant and thus we may use
Batchelor and Green's (1972b) expression in (6) for
the density of force-free pairs in shear flow.

We are free to choose any shape for L, provided
that the surface 4 ( of which L forms a part) en-
closes the region in which the Van der Waals forces
are significant. It proves convenient to choose L
to be the volume which lies between the central
sphere and a concentric sphere of radius 2a + A.

It can be shown that if

A = avAlpadk

4 encloses the region in which the Van der Waals
forces are significant. This value of A was used
in calculating the coagulation rate.

To determine ¢ from (6) we require expressions for
the curves which form the boundary of I'. One part
of that boundary, formed by the intersection of L
with the boundary of the region of closed traject-
ories is easily determined. Pairs which pass
through the other part of the I'-boundary pass out
of L on trajectories which lie on the boundary of
the region of closed trajectories. Thus to deter-
mine this part of the I' boundary, we require
expressions for the trajectories of pairs in L.

The expressions for the relative velocity of pairs
in L are greatly simplified by the fact that the
pairs are nearly touching and hence there are large
lubrication stresses generated in the thin layer of
liquid between the spheres. By integrating these
equations in a straightforward manner we obtain the
required expression for the trajectories of the
pairs in L.

With the aid of these expressions we can calculate
the coordinates of points of the I'-boundary by
finding the point of entrance into L of pairs

which leave L and move along the boundary of the
region of closed trajectories. By repeating this
procedure a large number of times and performing
the integration in (6) numerically, we obtain the
value of C.

The results of these calculations are shown in
figure 4, From that figure it can be seen that

the slope of the coagulation rate curve decreases
as the shear rate increases, and at very high shear
rates the coagulation rate approaches the limiting
value 2.04 x 10°(n®Alu).
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Figure 4 The computed values of non-dimensional

coagulation rate CH/n’H
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