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SUMMARY Laminar and turbulent incompressible flow in the entrance region of a smooth pipe is analysed

by dividing the region into two parts; inlet and filled.
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Experimental data corroborate the theoretical
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u coefficient of dynamic viscosity
v coefficient of kinematic viscosity
p density of the fluid

wall shear stress
X

£ non-dimensionalized axial distance = BiRe

1 INTRODUCTION

Investigation of laminar incompressible fluid flow
in the entrance region of a pipe, or a duct, has
been reported by several workers. The physical
model hitherto chosen consists of a viscous
boundary layer near the wall and a potential core
in the centre.

While Schlichting (1934) carried out a series
solution for the potential core velocity; Schiller
(1922) , an integral analysis with second order
velocity profile in the boundary layer; Atkinson
and Goldstein (1938), an addition of velocity
defect to the final fully developed Poiseuille
solution; in all these analyses, the tacit
assumption has been that the similar velocity
profile of the fully developed flow is reached
simultaneously at the location where the boundary
layers meet at the pipe axis - consequenting on
the vanishing of the potential core.

Experimental observations by the present authors
however, indicate that the potential core vanished
much earlier (inlet region) and that adjustment of
a completely viscous profile (filled region)
preceeds the attainment of fully developed flow.

A passing reference to such a phenomenon was
indicated by Goldstein (1938).

In carrying out the present analysis, the entrance
region has therefore been assumed to consist of
(i) an 'inlet region' with potential core where
boundary layer equations are applicable, and (ii)
a completely viscous 'filled region' where Navier-
Stokes equation, with order of magnitude analysis,
if possible, has to be applied.

Comparatively limited reference exists for the case
of turbulent flow in the entrance region. Aside



from the elimination of the filled region, the
analysis due to Ross and Whippany (1956) assumes
that the laws of velocity profile and shear stress
in the fully developed flow are applicable in the
entrance region. Barbin and Jones (1963) assumed a
1/7th power law, but did not derive any law for
wall shear stress in the entrance region. The
fully developed and the entrance regions differ

in the nature of pressure gradient, and Ross's
assumptions or Barbin's profile are guestionable.

In this paper, the laminar flow analyses are
confirmed by experiments and generalised turbulent
flow laws are derived by combining experimental
and analytical informations.

2 ANALYSIS
2.1 Laminar Flow

The physical model of the flow in the entrance
region, together with the chosen coordinate system
is shown in Figure 1
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Figure 1 Physical model of entrance region

Incompressible, steady, axi-symmetric flow of a
homogenous, isotropic fluid with uniform velocity

at entrance tothe pipe is considered without viscous

dissipation.

It is assumed that the length of the inlet region
X_, is large compared to boundary layer thickness
and the length of the filled region is tooc large

compared to the pipe radius.

2.1.1 Governing equations

Order of magnitude analysis using R
Xe — Xf
a2, 13 3u
<<1, leads to %= EE(r T )
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in the filled region, and the resulting momentum
equation has the form similar to boundary layer
equation of the inlet region.

The governing eguations for conservation of mass
and momentum are
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The following boundary conditions are applied to
choose a veloecity profile for a Von-Karman-
Pohlhausen type integral solution of the flow with
pressure gradient in both the inlet and the filled
region.

The boundary conditions are

u=0, v=0aty=0,no slip condition
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The velocity profile satisfying these boundary
conditions are
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for both the inlet and filled region while noting
that 11=0 in the inlet region. It would be noted
that the velocity profile given by eq.(3) becomes
parabolic of the fully developed flow, when 27 =

- %2- andTi= o %} resulting in a= 2n—n2. In other

words the values of the pressure gradient parameters

marking the end of the entrance region are
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2.1.2 Solution

The partial differential equations (1) and (2) of
continuity and momentum are integrated between
n=0ton=1, to yield
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The velocity profile defined by eq.(3) is used to
evaluate the non-dimensional displacement and
momentum thicknesses, 61 and 83*, and when
substitution are made in egs. (4) and (5), the
following result
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where Fl
and F_ are functions of Al and ri, and are defined
in the appendix.

to F6 are functions of Al and 51, and F7

The variation of 6, and A, in the inlet region and
ri and A., in the Yitea region, respectively
from sets of egs. (6, 7) and (8,9) are obtained
by numerical solution using Runge-Kutta method and
the results are given in Figs. 2 and 3.

Knowledge of local values of 61' A, and [.

enables evaluation of velocity profile; from whence
the skin friction coefficient using Newton's law
of wall shear stress, and pressure gradient in the
inlet region using Bernoulli's equation are
evaluated.

Bernoulli's equation is not applicable in the
filled region in the absence of a potential core;
the pressure gradient here is evaluated numerically
by Taylor's series expansion
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It is observed that the boundary layer thickness
becomes equal to pipe radius, 6. =1, at £ = 0.036
where A, = 2.727. The end of the filled region,
which aiso marks the end of the entrance region,
was said to be reached when Unax/Us = 2 (within

a numerical deviation of less than 1%) at &= 0.150,
where A, = -1.6830 (ideal X, = -1.7143) and

[ = -0.2839 (ideal [{= -0.2857) were reached.

(10)

2.2 Turbulent Flow

An analysis for the turbulent flow in the entrance
region could be carried out in a similar manner,
if suitable laws for the velocity profile and the
wall shear stress were known.

It would be observed from the experimental results
reported in the succeeding section that a power
law profile
1/n
wo= Ly W

Ueo

with value of n dependent on Reynolds number, and
a law of wall shear stress different from fully
developed flow could be applied to the inlet
portion of the entrance region.

On the basis of such laws, the various parameters
are
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respectively
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Z F9 to F11 being defined as in the appendix. The

velocities are their time-mean values.

From these two equations (11) and (12) numerical
evaluation of 8, is possible, when the value of n
and Cfl' determined from experiments are substituted.

The values of §. so evaluated are compared with
experimental da%a I Elga 5

3 EXPERIMENTS
3.1 Laminar Flow

Low velocity air flow corresponding to Reynolds
numbers 1875, 2500 and 3250 was created through

a 30 mm i.d. smooth aluminium pipe of 6 metres
length from a large settling chamber; the connection
between the pipe and the chamber being a smooth
reentrant bell-mouth ensuring uniform velocity at
entrance. Static pressure variation was measured
along the length of the pipe. An impact micro-probe
made out of 2mm i.d. hypodermic needle with
flattened end was fitted to a micrometer for the
total pressure traverse at different axial position.
An Askania micromanometer with 0.0l mm wg.
sensitivity was used for velocity head measurement.
The potential core was said to be reached when the
micromanometer reading remained unchanged for 1 mm
traverse of the probe.

The measured value of boundary layer thickness,
velocity profile and static pressure variation are
given in figs. 2, 3 and 4, together with theoretical
and results of previous investigations.
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4 CONCLUSIONS

100 In figs. 2,3, and 4, the results of analysis and
E == POISEUILLE FLOW experiments together with the results of earlier
e Sty s CHLEER LIS BN (RN ATTARNSON, K=l DFtEtoLEIoR) investigations for laminar flow are presented. The
= o CAMPBELL AND SLATTERY (1963) A 1 %
[ 3 e g N major conclusions are
I THEORY } PRESENT (NVESTIGA E
'y LANGHAAR (1942) / (i) The inlet portion with a potential core

exists till

8¢ = X __ - 0.036, followed by
R.Re

the viscous filled region of £g-Ef= 0.114
so that the total entrance length is &, =0.15.
This value compares well with the results of
Atkinson and Goldstein (1938) and Campbell
and Slattery (1963) based on velocity defect
analysis obtaining £ = 0.13 and 0.136
respectively.
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// (ii) The calculated static pressure variation
//' agrees well with the measurements of the
present and earlier investigations.
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(iii) The terminal values of A; and Fi differ
; PRI £ e L O GO oy 0 M DT O e A from their exact values by less than 2%.
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The agreement of Ay and[; and the static
pressure variation lays confidence to the
Figure 4 Pressure drop in the entrance region, present analysis based on the hypothesis of
laminar flow inlet and filled portions in the entrance
region.
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The results for turbulent flow are summarised
as

(iv) Measurements indicate that the velocity
profile in the inlet region has a Reynolds
number dependent index different from fully

3.2 Turbulent Flow

Similar measurements of static pressure variation developed value. It is plausible to
boundary layer thickness and velocity profile were hypothesize, on the basis of observations in
carried out in turbulent flow through a pipe of the laminar flow, that this index undergoes
40 mm i.d., 650mm in length at Reynolds numbers adjustment in a filled region to finally

66750 and 82250. attain the constant fully developed value.

A summary of experimental data indicated that (v) Both the boundary layer thickness and shear
stress coefficients have been evaluated using
suggestion of Ross and Whippanny (1956) and

Ludwieg and Tillman (1949). Their relations
By a control volume analysis over small sections of which are same as/or derived for fully

the inlet region, it was possible to estimate dis- developed data, fail to verify either of the
crete local value of wall shear stress that could
be considered constant over the section under
consideration, from the measured values of static
pressure and computed values of momentum using the
measured velocity profile.

n = 9.3 for Re = 66750 and n = 9.5 for Re= 82750

above two parameters; nor even the pressure
gradient variation. On the other hand the
present correlations derived independently
from experiments when used in the conservat-
ion equations predict experimentally
attainable boundary layer thickness, fig. 5,

A Blasius type correlation was undertaken to obtain and static pressure variation, fig. 6.

an emperical relation for Cfl, as
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stress in the inlet region, turbulent flow
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Figure 6 Pressure drop in the inlet region,

turbulent flow
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6 APPENDIX

P (08 = (118-%;1)-61(523 L0
+52 (35- T A) - 63 K-
POy, 8)) = (4 % A+ 22 -5
- 87 (-3 -8 G- s M)
+ 67 (32 - 515 M)
Ey Ligeaspd =(g%%" %’Al * 3%5 A i )
8 g sy g By )
F4 (Alf 51) = (108 - 3Al) = 61(48-2Al)
Po(A, 6)) = 720 6, + 360 A, + 60 A §
T B = 643 = 8
6 11 1 1
F.’,(Rl; rl) = =95040 + 22608).1+ 168Ai - 473904 rl

2 2
- 4248l1 [1 -972[i + 217\1 ri
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F O, ) = 864-9% | + 243 [
Fg( 51,n) = 2(n+1l) - 2n(n+2) 61
P (8, m) = (n+l)(2n+l)-2(2n+l)dl+(n+l)Si
P, (6,m) = (4n+2) - (2n42) 6,
F L (6,,m) = (4n42) (3n42) 8 - (n+2)(3n+1)6i
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