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SUMMARY
depth, by a submerged shelf.

The paper presents 3 numerical solution to the problem of reflection of waves, in water of finite
Using linearized water-wave theory, the problem is reduced to that of solv-

ing coupled integral equations in the boundary values of the velocity potential and its normal derivative.

Straightforward numerical techniques are used to solve the problem.

The computer programme has as input

the co-ordinates of the prescribed bottom topography and outputs the reflection and transmission coeffic-

ients as functions of freguency.
. INTRODUCTION

This paper presents a method for determining the
amount of reflection that takes place when a plane
progressive water wave moves from one region of
constant depth to another region of the same or
different constant depth, separated by an intermed-
iate region of given bottom topography. As in most
previous work only the two dimensional problem is
considered, although extension to three dimensions
is possible.

It is assumed that wave amplitudes are small so that
the problem may be linearized. The fluid is further
assumed non-viscous and the flow irrotational, so

that Laplace's equation holds throughout the fluid.

The simpler problem of reflection by a vertical step
was considered by several authors, including Hilaly
(1267), and Bartholomeusz (1958). However, few
results have been obtained for the more general
problem outlined above.

Evans (1972), using a Green's theorem approach was
able to reduce the problem to that of solving one
singular integral equation. However, the kernel
required in this formulation is extremely complic-
ated and Evans gave no results. For general
bottom topography this method appears limited in
practical application.

Fitzgerald (1976) has recently solved the problem
numerically for certain types of bottom by an inverse
method. The results he presents are rather restr-
icted, however, and only those types of bottom

which can be mapped uniformly by a specific analytic
function to a bottom of fixed depth are considered.

Yeung (1975) by contrast, developed an integral
equation which uses a distribution of simple sources.
The drawback of this method, however, is that equa-
tions of large order must be inverted to obtain
accurate results.

This paper steers a mid-course between the two
extremes advocated by Yeung and Evans. By using
the finite depth Green's function (Wehausen &
Laitone, 1960), the number of points at which the
potential function and its derivatives must be
evaluated is much less than in Yeung's method, yet
the kernel functions for the integral equation do
not become computationally unmanageable as in the
method proposed by Evans.
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2 MATHEMATICAL FORMULATION

Cartesian coordinates x and y are used. The
region (-L,0) of varying depth is given by
y==h(x) where h(x) is known (see Fig.1l). For
x > 0 we assume constant depth vy = -hi,and for

x < -L. we have vy = -hz, where for definiteness we

assume hz 2 h; .
G, given by h;/h;

An important parameter here is

y=h(x)

Figure 1

We assume that the fluid motion may be described by
the complex velocity potential ¢ (x,y), where a
sinusoidal time dependence has been suppressed. This
potential must satisfy a free-surface condition,

%%,_ v =0, y=0
where V = UZ/g, o is wave frequency and g the
acceleration due to gravity. It must also satisfy
the condition that there should be no normal fluid

velocity on the bottom, so that

(1)

%%—= 0 for y = -hz,=® < xS -,
: y = -h{x),-L<x <0 (2)
and y = -h;,0 < x < ®

Plane progressive waves of unit amplitude are inci-

dent from x = -~ so that ¢ takes the form
iK, x -iK,x ,cosh Kz (y+hs)
> + =
¢ (e ge ) cosh Ksohz L i
and
iK, x cosh Kj (y+h;)
<+ T _—— -+ 0 4
¢ & cosh Kih) aF Ik (4)
where p and T are the complex-valued reflection

and transmission coefficients. Ki and Kz are the
characteristic wave numbers for waves of frequency

0 in water depths hj, hy respectively given by

% tanh % m.= B S N
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3 FORMULATION OF THE INTEGRAL EQUATION

Ideally one might wish to formulate the problem in
terms of a single integral equation involving only
the velocity potential on y = -h(x) as was done by
Evans (1972). As has been mentioned before, however,
this leads to an integral equation with an extremely
complicated kernel, since the Green's function
required must satisfy two radiation conditions for

x + *=, that involve two different wave numbers, as
well as Laplace's equation and the boundary conditions
(1) and (2). The use of this kernel can be avoided,
at the expense of producing more complicated integral
equations, if the fluid region is considered to be
divided into two parts by the arc -h; <y <0,

x = 0.

Application of Green's theorem separately for x = 0
and x < 0 yields two coupled integral equations.
For x =2 0,

¢(€rn) = Jr) G1 (X.Y)%&(O:Y)-‘ﬁ(ouy)?a%:—(ouw dy
-1

where G;(x,y) = G(x,v,&,n,h;) satisfies (2),(3)
and Laplace's eqguation and behaves like an outgoing
source, in water of depth h;, at x = * ® . For
x<0

(6)

1 (E,m)=po (E,m)+ {¢(x.y)%§f4xly)dl

B
—[0 29 (0,y)G2 (0,y)dy
J, %

[ 8c
+J = (0,y)¢(0,y)dy (7)
-h,

where the bar on the integral indicates the Cauchy
Principal Value and

_ cosh Kz (n+h2) iK &
¢0(£rn) T eoah Kohz e 5
B is the arc y = h(x), -L<x< 0 .

(8)

This set of equations may be solved numerically,
as described in the next section, to obtain the
boundary values of ¢ and ¢,. Once thkis has
been done the determination of the reflection and
transmission coefficients, p and T, is straight-
forward. To determine p, for instance, one
inserts the calculated values of ¢ and ¢, in
the limiting form, as & >+ —» , of equation (7).
Comparison with (3) allows the reflection coeffic-
ient to be readily computed. Similar methods

may be used to determine the transmission coeffic-
ient.

4 NUMERICAL ANALYSIS

To solve (6) and (7) numerically requires scme
method of discretization. The assumption made to
allow this is that both ¢ and ¢, are slowly
varying on the arc B and on 0 > y > -h;,x = 0.
Therefore the arc B is divided into N segments
(% ,%_+1), j =1,...,N, such that x <x < %

In each segment the approximation ¢(x,y) = % is
made. In the same way the arc 0 >y > =h;,x = 0
may be divided in to N segments (¥ 19 4¢) with
¢(0,y) = ¢ and ¢,(0,y) = ¢ for J=N+l,...,2N.
The integral equations must bé satisfied at the 2N
points

(x + )
£ = ——L—giii— i=1,...,8 (9
and
(Yi +yi +1 )
N = ———— i=1,...,2N (10)

In this way, for instance, (6) becomes (with £=0)

2N
6= I ¢ F. (11)
B gugen T
where
Y'+1
F, = 2r ? G1(0,y:0,n, )dy- (12)

Note that no assumption has been made about the
behaviour of the kernel functions in the above approx-
imations. All integrals in the formulation are
determined analytically.

Equations (6) and (7) may now be recast in the form,

29 = bo (13),

where Z 1is a matrix given by,

LI-A B (0
= LI-D E 0 (14)
0 I-F 0
with A=[Ai}-],B=[B“] and so on. B B ...,
F,. are of a similar form to (12), I represents

the identity matrix and all submatrices are of order
N.

The vectors ¢ and ¢y are given by,

¢

I

[¢'1rl--r¢Nr¢xlr---:¢er¢N+1 .r-"l¢‘2N]' (15)

and g

$o = [do, seeesdopp0s...,0] (16)
with ¢ul etc. being the obvious discretization
of ¢a(5:ﬂ) s

Scolution of (14) by standard inversion techniques
therefore solves thz original problem.

5 RESULTS

The above was coded on the Adelaide University CDC
6400 computer. It was found that satisfactory
accuracy was achieved at moderate frequency by the
inversion of a 60X60 matrix Z. However, at higher
frequency to maintain the level of accuracy larger
matrix inversions were required, and in fact the
accuracy obtainable will decrease as frequency
increases.

The most obvious problem to test the completed
programme on was the simple step, for which results
for a wide range of frequency and the depth ratio
0 have been given by Hilaly (1967). As can be
seen in Figure 2 good agreement is obtained, except
at high frequency.

06

— — — Hilaly

vh,

Figure 2

For low frequency, Tuck (1976) has extended the
shallow water approximation for this type of problem.
His first-order correction indicates that the magni-
tude of the reflection coefficient is constant for
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all frequencies but also predicts a linear increase
with wave number in the phase of the reflection
coefficient. Figure 3 indicates good agreement
between this theory and the present work.

At nigh frequency, the asymptotic form of the
reflection coefficient is of interest. Fitzgerald
(1976) has developed an analytic theory for some
bottom contours (including the simple step) but
his final answer is rather obscure. The present
programme was used to attempt to find, numerically,
the high frequency behaviour for a simple step.

As can be seen in Figure 4 it appears that

g T (17)

p-}
No such limit appears in Hilaly's results. Since
the result (17) might have been predicted by purely
intuitive arguments, it tends to suggest that the
present results may be more accurate than Hilaly's
for large frequency.

An extension to the simple problem of the step is
that of a step with a vertical barrier at x =0
extending part of the way to the free surface. The
results for this problem (Figure 5) are interesting
in that for fixed o, as the flow is closed off
more and more (i.e. as the top of the barrier gets
closer to the free surface) a distinct peak in the
reflection coefficient becomes apparent, whereas

for the simple step the reflection coefficient
decreases monotonically with frequency. Fitzgerald
(1976) examined this problem but only for small
values of p/h, It may also be noticed that however
much the gap above the avrrier is closed off, the
zero frequency result is always the same, indicating
that the transmission of very long waves is indep-
endent of barrier geometry.

Another problem of practical interest is that
where y = -h(x) is given by a straight line join-
ing the two unequal depths y = -hi and y = -ha2
This bottom topography, in contrast to those treat-
ed previously, allows the possibility of multiple
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Figure 5

maxima and minima in the reflection coefficient,
due to the presence of the two corners. It may be
seen (Figure 6) that successive minima are indeed
obtained as frequency increases. The locations
of these minima are quite accurately predicted by
shallow water theory and as L/h; becomes larger
there is agreement in the magnitude of the reflec-
tion coefficient. An asymptotic analysis of this
problem; for high frequency, would be complicated
by the fact that the reflection coefficient does
not decay monotonically.

Although the programme was not originally designed
for problems where h; = h2 these too can be
investigated by suitable location of the mesh points.
For instance, a single vertical barrier at x = 0
extending from y = -h; partway to the surface may
be considered. Results for tHis problem have been
obtained both by Fitzgerald (1976) and by Mei and
Black (1969), who used a variational approach. The
present work (see Figure 7) shows better agreement
with the theory of Mei and Black than with that of
Fitzgerald, although the differences between all
three solutions are marginal and may be considered
to be due to numerical error.

Mei and Black also give results for a square hump
on a bottom of fixed finite depth (see Figure 8).
Again, good agreement is shown with the present
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" work. Indeed the curve for L/h; = 3 is espec-

ially encouraging since it shows that the programme
is able to deal successfully with situations where
the assumption made about ¢ being slowly varying
on the arc B might be suspect.

6 CONCLUSIONS

The present method shows good agreement with prev-
ious work done in this field. It is straight-
forward to implement and answers can be obtained
relatively quickly and efficiently, especially at
moderate frequency, where most practical applic-
ations would lie.

It has immediate real application in the prediction
of reflection of waves over continental shelves and
in determining the behaviour of certain types of
breakwater. It has advantages over other tech-
niques, such as Fitzgerald's (1976), in that any
bottom geometry y = -h(x) may be treated, irres-
pective of whether it may be described analytically.
Where an approximately two-dimensional situation
exists, it may be used to approximate wave behav-
iour once the bottom topography has been determined.

Finally the method is capable of extension
(admittedly with some difficulty) to the three-

dimensional problem.

This would allow non-normal

incidence of waves to be taken into account, as
well as allowing for more realistic bottom geometry.
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