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SUMMARY The effect of expansion ratio and entry condition on various flow characteristics of a symmetric

sudden expansion are examined.

in eigenfunctions of the Poiseuille flow development.

Equation for large Reynolds number is integrated by using an expansion

Results include streamlines, the distribution of

centreline velocity and pressure, the reattachment length, the development length and the pressure

recovery coefficient.

1 INTRODUCTION

Flow in a channel with a sudden expansion is a
basic prototype of internal separated flows which
arise in many engineering applications. This paper
focuses attention on laminar flow that is steady,
two-dimensional, and symmetrical.

Solution of the Navier-Stokes equations for such
flows by using a finite-difference scheme is given
by Hung and Macagno (1966), Morihara (1972), and
Durst et al. (1974). Kumar and Yajnik (1976a) have
considered internal separated flow at large
Reynolds number (see also Yajnik and Kumar, 1972).
They show that the appropriate governing equation
(except possible for small subregions) in
non-dimensional form is

Yy Vyyx T ¥x Uyyy T Yyyyy (1)

where y is the streamfunction, and x and y refer
to the streamwise and the transverse coordinates
(see Fig.l). x in (1) has been scaled by the
Reynolds number R, which is based on channel half-
width and average velocity downstream of the
expansion. They have also developed a method to
solve (1) which uses an expansion in the eigen-
functions of the Poiseuille flow development. The
problem is thus reduced to solving a set of first
order ordinary differential equations.

This paper examines the effects of expansion
ratio and entry condition on various flow
characteristics by using the above method.

2 BRIEF REVIEW OF THE METHOD
Let ¥ be expressed as
3
vV=3% (3y - y7) + ;‘:n a (x) ¢ (y) (2)

where ¢m s are the eigenfunctions of

827 A13/2(1 - ¥2) ¢ + 391 = 0 (3)

with ¢ =¢I =0 at y =% 1. The adjoint problem is
given by
o I3~ 9% e e BT =0 (4)
with 8 = @' = 0 at y = * 1, The biorthogonality
relation for the present problem is
{% ¢m 8y dy = 0, m # n. (5)

As the flow is symmetrical, only those eigen-
functions are used in (2) for which ¢' is an even
function of y. The following equations are
obtained by substitution of (2) in (1),
multiplication by.Bm, and integration.
ar+ i a =%EFc a' a (6)
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where
e = %G et e 6f).ay (7
mpg mme=10 e g Tp: e
= l n w
Gm = £l ¢m Bm dy (8)

The initial values a = a (0) are
mo m
i 3
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The problem is thus reduced to solving (6) with (9).
Flow variables such as |y and pressure p can then be
determined. Note that p does not depend on y. In

a calculation with N eigenfunctions, the range of
summation in (2) and (6) is from 1 to N.

3 ENTRY CONDITION

Two extreme entry conditions are considered, namely,
parabolic and uniform velocity profiles, correspond-
ing to a long and a short inlet. Intermediate
conditions with non-zero boundary-layer thickness
can also be considered. amo is given by

— . 4 Py 3

amo = 6 [h Bm(h) Bm(h)]/(Gmh )

(parabolic entry) (10a)
= -2 B;(h)/(Gmh), (uniform entry) (10b)

where 1/h is the expansion ratio.
4 RESULTS

Experience suggested that satisfactory results are
obtained even when only a few eigenfunctions are
used (Kumar and Yajnik, 1976 a and b). N was
restricted to five for the present calculations.

4.1 Streamlines

Fig. 1 shows streamlines for h=0.5 with parabolic
entry along with those obtained by Hung and Macagno
(1966) . Quantitative comparison of flow
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tangential injection for two sizes of slot. The
diffusers which have axial injection clearly have

a much better performance, the peak C_ being higher
and occurring at a lower rate of injeCtion. With
the 0.35 mm slot, the peak C_ is about 0.08 higher,
and with the 0.75 mm slot itFis about 0.05. With
no injection, the performance with the tangential
slot is again worse than with the axial one poss-
ibly due to the small downstream-facing step pres-
ent in the tangential slot geometry, as shown in
Figure 4. One effect of the step is to shorten the
diffuser slightly but a more important consequence
is thought to be that it encourages flow separation
and counteracts the benefits due to injection. In
most other respects (e.g. regarding the effects of
slot size) the axial and tangential modes of inject-
ion produce similar behaviour.

Further data relating to the discharging flow were
obtained from velocity measurements for axial and
tangential injection and for differenct Values of k.
For the axial slot, an improvement in velocity
profile occurs with increasing injection and the
recirculation region which is present initially
becomes smaller and ultimately disappears when k
is about 2, a similar value to the optimum for
maximum pressure recovery. The profiles do not
reveal any deteriorating symmetry due to injection
and so the results for the axial slot do not
support the tentative conclusion to teh contrary
ehich was drawn in the preliminary work with large
slot.

Turning to the velocity profiles for tangential
injection, these reveal that the flow is now less
stable than for axial injection and there is a
tendency for any asymmetry already present to be am
amplified by the injection. The present profiles
for small tangential slots are in fact similar to
those for large axial ones form which the above
tentative conclusion was made.

Figure 5 Effects of injection rate and slot size
on Pressure Recovery Coefficient

(Axial injection and 30° cone angle)

Figure 6 Comparison of axial and tangential
injection for two sizes of slot.
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It may be comcluded from the comparison between
the axial and tangential modes of injection that
in every aspect that has been examined the axial
mode is better. The slot geometry is less complex,
the pressure recovery is greater and is achieved
with less injection, and the discharging flow is
more stable and symmetrical.

Regarding the general merits of secondary injection,
it is concluded that, by causing the flow to remain
attached to the conical wall, injection yields
considerable improvements in both the quality of

the discharging flow and the magnitude of the
pressure recovery. CP is more than doubled by
optimum injection in spite of the fact that

is defined so as to take account of the additional
kinetic energy and pressure energy of the injected
fluid. The slot width should be as large as
possible, consistent with there being an appropriate
secondary supply available, and for design purposes
it is recommended that the size should be estimated
from the empirical expression

0.l14¢c = (ﬁslﬁ1)2.

Reduction of the cone angle from 30° to 20° offers
a small improvement in the maximum at the
expense of an increase of over 50% in the cone
length.
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characteristics is given in Table I. x_ and x_are
streamwise coordinates of the point of reattach-
ment and the centre of eddy respectively.
Recirculation in the eddy is given by (¥ - 1).
Thus the present results are in good agreement,
qualitatively as well as quantitatively, with
earlier results.
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Figure 1 Streamlines obtained by the present
method and given by Hung and Macagno
(1966) . h = 0.5, parabolic entry.
N = 3; R= 46.6 (for Hung and Macagno)

TABLE I

COMPARISON OF THE PRESENT CALCULATION WITH THAT OF
HUNG AND MACAGNO (1966)

X X
E e

(V-1

Present Calculation 0.064 0.014 0.045

(N= 3)
0.013 0.052

Hung and Macagno 0.066

4.2 Centreline Velocity Distribution

Fig. 2 shows centreline velocity distribution u .
For the parabolic entry, u_ decreases monotonicglly
to the Poiseuille flow valie.
is observed for h = 0.75 with uniform entry. The
incoming flow decelerates at first due to its
mixing with .the *‘dead' fluid. Later as the flow
develops, U, increases to attain u_(co) as it has
fallen below its final value. Simifar behaviour
also occurs for h = 0.6. 0.7 and 0.8(not shown

in Fig.2). However, if u (0) is much larger than
uc (o), e.g. h = 0.5, uc(g) does not fall below

A different behaviour

u (co) and the above behaviour is not observed.

e above 'dip' in u_ is not seen for h = 0.9 and
also 0.95 (not shown'in Fig. 2), as it is possibly
too small to be detected with N = 5.
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Figure 2 Centreline velocity distribution

with uniform and parabolic entry.
N =5. h=0.5 0.75 and 0.9

4.3 Pressure Distribution

Figure 3 shows .the pressure variation. Asymptotes
to these pressure distributions are p = -3x + P_,
where P is called the recovery pressure. The E
reattac nt point A is a short distance upstream
of the pressure maximum. The behaviour close to
x =0 for h = 0.5 and 0.9 with uniform entry
probably calls for larger values of N.
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Figure 3 Pressure distribution with parabolic

and uniform entry. N=5. h = 0.5,0.75
and 0.9. A denotes reattachment point
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4.4 Reattachment Length

Fig. 4 shows the variation of reattachment length
x_ with h. Durst et al. (1974) have calculated
the flow using the Navier-Stokes equations for

h = 1/3, with an approximately parabolic entry
condition. x_ of their calculation is in good
agreement with the present results. The length
of the recirculating region is generally smaller
for uniform entry than for parabolic entry as the
mixing layer is stronger. Reattachment could not
be obtained for h greater than 0.8 with N = 5.
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Figure 4 Effect of expansion ratio (1/h)
on the reattachment length. Value
given by Durst et al. (1974) is for

h=1/3, R = 18.67.
4.5 Development Length

Development length x_ is defined as the smallest
value of x beyond which u. is within 1% of its
fully developed value. Fig.5 shows variation of
Xq with h.

The case of h = 1 with uniform entry corresponds
to the classical entry flow problem (see Kumar

and Yajnik,1976b). The agreement of the present
results with those of Schlichting (1934) and
Morihara (1972) is seen to be very good (Fig. 5).
The entry condition seems to have very little
effect on x3 for small values of h. Xd decreases
monotonically to zero for the parabolic entry.
However, a minimum occurs for h = 0.5 with uniform
entry.

4.6 Pressure Recovery Coefficient

Pressure Recovery coefficient C is conventionally
defined as P.*AspU*2) where P, *F" is the dimens-
ional recovery pressure and U  is dimensional
reference velocity. Hence C = 2P . It is a measure

of gross effect of the sudadBh expa%sion on the far
downstream flow and has been shown in Figure 6 for
different values of h. The present result is in
very good agreement with the values given by
Schlichting (1934) and Morihara (1972) for the
channel entry flow.

P, can be estimated by a simple approximate
momentum balance calculation. The constant
pressure gradient of -3 of the fully developed

flow, and the direct viscous effect are disregarded.
Pressure acting on a sufficiently downstream
section then is P, and is due to the change in

i © PARABOLIC ENTRY
° 8o, ® UNIFORM ENTRY
@
o]
- L ]
p v SCHLICHTING
[ ]
_ ©  MORIHARA
0-2 | 00
®eop LN IS
e ©
4 o
o]
1 [l 1 ]
0 0-5 h I-0
Figure 5 Effect of expansion ratio (1/h) on

the development length. Values
given by Schlichting (1934) and
Morihara (1972) are for the channel
entry flow (h = 1, uniform entry).

momentum flux. Cpr is given by

C
pr

12/5(1/h - 1), (parabolic entry) (11a)

2/h - 12/5 (uniform entry) (11b)
The above expressions predict C,, rather well for
moderate values of the expansion ratio (see Fig.6).
As h goes to zero, these expressions are singular
and cannot be expected to be valid for large
expansion ratios. r 1S expected to be reduced
considerably as the losses due to the expansion
will be significant for large expansion ratios.
The present calculation suggest that Cpy may be
approximately taken equal to 4 irrespective of the
entry condition for h s 1/3.
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Figure 6 Effect of expansion ration (1/h)

on the pressure recovery coefficient
--=; (lla); ___ (11b).values given

by Schlichting (1934) and Morihara
(1972) are for the channel entry flow,
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CONCLUDING REMARKS

A simple method requiring solution of a few
ordinary differential equations is used to solve
the present problem. The calculated streamline
pattern and other flow characteristics compare well
with the solution of the Navier-Stokes equations
for an expansion ratio where results are available.

The centreline velocity decreases monotonically

, to its fully developed value for parabolic entry.
However, it is not so for a certain range of h
when the entry flow is uniform. Also there is a
region beyond reattachment where pressure tends
to be approximately constant.

Reattachment with uniform entry occurs in general
earlier than with parabolic entry.

Development length monotonically decreases to zero
as h tends to one for the parabolic entry. While
with uniform entry, it has a minimum for the
expansion ratio . of about 2.

Pressure recovery coefficient is in general
smaller for uniform entry than for parabolic entry.
Its approximate evaluation for moderate values of
the expansion ratio is given. The pressure
recovery coefficient may be taken to be 4 irres-
pective of the entry condition for ratios of
expansion greater than 3.

The present calculation is based on a large Reynolds
number limit equation. The favourable comparison
of the present calculation with that of Durst et

al. (1974) for R = 18.67 shows that the results are
applicable for moderately large R.
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