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SUMMARY

and exponential functions emploving new boundary condition.

An unsteady state soluticn for cavity well with segemental cavity is obtained in term of error

The solution can be used for determining

aquifer properties and for prediction of steady state discharge for any drawdown.

1 INTRODUCTION

The hydraulics of steady flow to a non penetrating
well having hemispherical bottom is given by
Muskat (1) . Mishra et al (2) and Chauhan (3) have
analysed on similar lines to that of Muskat. They
have modified the hemispherical bottom considered
by Muskat to that of segement of sphere, as
expected to be existing in a cavity well. Sarkar
(4) has recently studied the unsteady flow to
cavity well with hemispherical bottom. In this
paper a new boundary condition has been introduced.
The well known Laplace transform technique has
been used to obtain the solution in form of
rapidly convergent error functions. The method
of contour integration is employed to obtain the
inverse of Laplace transform.

2 NOTATION

K Hydraulic Conductivity

S Specific Storage Coefficient
S Steady State Drawdown

Q Pumping Rate

r Radius of Segement

T Depth of Segement

P Parameter of Laplace Transform

B A new Parameter

I%(kr) Bessel Function of First kind of Half
order

K¥%(Ar) Bessel Function of Second kind of Half
order

% v o
erf(x) Error Function =

2
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3 THEORY AND SOLUTION
3.1 Differential Equation and Boundary Conditions

The differential equation governing the symmetrical
flow with respect to © and ¢ in spherical
co-ordinate in term of drawdown 's' is given by
(Fig.l). !
s + ds
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Figure 1 Diagram showing cavity well and
coordinate system

where C = K
Ss

For the system, time is considered zero just before
the start of pumping. Thus at initial time t=o,
the whole system is in equilibrium and

s(r,0) =0 for t = o (2)
Second boundary condition is that

as r +», S+ o0 i.e.

S(», t) = 0o for t > o (3)

Third boundary condition suggested is

28%%

=8 [l=e (4)
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sl » t) for t>o
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3.2 General Solution

Employing Laplace transform with respect to time
't' and using initial boundary condition (2) the
eq (1) transforms into
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and boundary conditions (3) and (4) are transformed
into

S (», P) =0 for P > o (6)

N s g2

s (r_,p) = 2 for P > o (7
P(P+87)

The solution of differential eq. (5) is given in
term of modified spherical Bessel functions of
first kind and % order and second kind and % order.
A linear combination of these make the complete
solution.
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where A~ = P/C.

Employing boundary condition (6), we get A = o and
eg. (8) becomes

5 = B/f7= K, (Ar) (9

Employing boundary condition (7) the eq. (9) becomes
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3v3 Inverse Laplace Transform

The inverse Laplace transform of eq.(l0) is not
available, as such using asymptotic expansion
of Iu(z) and Ku (z) as given by McLachlan (5) we
get
= 5. @7 4 éd@'
—— (11)

where d = r -r

Resolving eq. (ll) into partial fractions, we have

- =85 F - avp - ak
s o w (e - e

r P P+ g2

) (12)

The inverse Laplace transform of first factor of
the bracket is given in table of Laplace transform
6 as

are s
L =l-erf ( 540 (13)

B3l Inverse integral transform

The inverse Laplace transform of the second factor
of the bracket is obtained by the inversion
integral along the line x = r (Fig.2)

r+if
Lo = -avp
F(t) = 27mi Mg =) e e dp
=i P+82 (14)
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Figure 2 Contour in complex plane 'P'

The sum of contour integral along the path consist-
ing of circular arcs and line segements is zero
since the integral is analytic except on the
negative real axis. The integral can be written as
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In the integral, on the small circle r=r , P=roele
on the upper semicircle P=ael® + B2gmi ;
and on the lower semicircle P=ae-1¢ + 82e T
along the upper side of the cut P = reT and on the

lower side of the cut P = re™™1, The integral on
the outer circle vanishes as R+ =,

Upon integration, we get

r+ie 2
& /ePte-d/P— dp = eB tcos gd
Znij : P+52
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And finally we have, inverse transform as

s S =g
S(r,t)= 2 ¥ I l-erf(2vVE - e “cosfd-I ] (17)
h
o, 2t
where PR = H sin ud .
I='IT 27 Hap
B—N
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The approximate solution of integral I for large
values of t is evaluated (Appendix I) and we get

» a
S(r,t) = i‘lrl [l-erf(, 7)) (l-cosBd)
r
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The steady state solution for finite radius of
influence circle R is given by Chauhan (2) as

Q = 21 TK

(H - h) (19)
1 -

| R
Al

Setting R as = and H—hc = So in eq(1l9), we have

So = Q
21 TK (20)
Substituting eg.(20) in egq.(18)
Qr d
S(r,t) = — [ 1-erf( =) (1-cospd)
2TTKr 2Vt
- cosfd Bt _ 2Bt ginpd(e 4t.)
s
(21)
4 CONCLUSIONS

(1) Eg.2l can be used for prediction of
drawdown for any rate of pumping at any
radial distance r after elapse of time t
from the start of pumping.

(2) Eg.2l1 can be used for determining the
aguifer properties like hydraulic conduct-
ivity and storage coefficient of aquifer
and parameter by pumping test.

5 ACKNOWLEDGEMENT

I wish to express my sincere thanks to Prof.S.V.
Arya, Dean, Faculty of Agricultural Engineering,
J.N.K.V.V., Jabalpur M.P. (India) for his
encouragement.

6 REFERENCES

1. MUSKAT, M.
Fluids Through Porous Media.
Book Co., New York.

(1937) . The Flow of Homogeneous
McGraw Hill

2. MISHRA, A.P., ANJANEYULA, B., and LAL, R.
(1970), Design of Cavity Wells, Journal ISAE
(India) Vol.II, No.2, pp.l2-15.

3. CHAUHAN, H.S. (1971). Steady Flow to a non
penetrating cavity well in an artesian
aguifer. Journal ISAE (India), Vol. III,No.l,
pp.23-27.

4. SARKAR, T.K. (1975). Exact Solution of
unsteady cavity well hydraulics, Journal
ISAE (India), Vol.XII, No.3-4, pp.l-4

5. McLACHLAN, N.W., (1955). Bessel Functions
for Engineers. Second Edition, Oxford
University Press, pp.204.

6. CHURCHILL, R.V., Operational Mathematics
McGraw Hill Book Company, Second Edition,
pp.328.

i APPENDIX I
Evaluation of Integral I

Resolving into partial fractions

. 2 1 .
1 = Vi o —_
= ?fe sin ud(y+g p-g) du (1)
(o]
Setting sin ud = sin(u+R-R)d and simplifying, we have
= 2
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Setting
1
sin (u#B) d = g |

TE;EY—— cos.d(u*R)a do] (3)

(=]
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cos (p%BR) 4

(L%A) d [ 1= //'sin d(u*B) o do] (4)
(3]

and substituting in Eg.2 and simplifying and changing
the order of integration we have

24 il = 7
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et f; -d202 /4t
since e cos dua du = % — ¢
t (6)
0
Szl 2 ; 3097 sy
substituting (6) in (5) and setting dTo” =i;
4t
1
and 2Bt- = Kl we have
d/2/E—u12
2
I =505 ko5 Rd e cos K_o_da
b= ’ 179 3,
+ sin Bd d/Zl/E‘ 2
e 17 sin K.q.ds ! (7
& 1%1%%)

Expanding cos Klal and sin K_o_. in series form

10
and considering first term of series, we get

d K_sinpd 2/
& Prwi 1 _d 4t
I = - cos Bd erf( 2r*t) + — (e -1)
T

(8)
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