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SUMMARY Boundary layer and heat iransfer over an extending film of polymer melt are treated by the

integral approximation.
along the film. Physical explanations are given.

1 INTRODUCTION

Polymer processing has presented some interesting
fluid mechanics problems. One of these is the cal-
culation of the fiber diameter in the spinning
process or of the film thickness in the film cast-
ing process. One would, for the first approximation,
consider the polymer melt as an isothermal, highly
viscous (low Reynolds number) Newtonian fluid and
obtain a very simple solution. For a polymer film
with the thickness H(X), it is simply H(X) = H,
exp(-AX), (Yeow, 1974), where A = q/(4uQ), ¢ is the
tension on the film, pu is the coefficient of vis-
cosity and Q is the volumeilric flow rate per unit
width. However, the coefficient of viscosity u of
ithe polymer melt is a highly sensitive function of
the temperature. For example, the coefficient of
viscosily of a low density polyethylene melil behaves
as

W(T) = 18.5 exp(22L0) (1)

where T is in degree Kelvin and g is in gm/cm-sec.
One immediate question 1o be answered is how the
heat transfer between the polymer mell and the sur-
rounding air affects the variation of {the film
thickness.

For polymer spinning, Lamonte and Han (1972) have
tried to calculate the radius of the fiber by taking
into account the air drag and heat transfer effects.
But in his theory, the heat transfer coefficient and
the air drag are provided by the empirical formulas
(kase, 1967) in which the only parameter reflecting
the interactions between the polymer melt and the
cooling air is the local fiber velocity. It is du-
bious how the effective boundary layer thickness and
the local velocity are related to each other in such
a simple algebraic way. For blown film process, Han
and Park (19?5) have used an empirical formula for
the heat transfer rate which implies a constant heat
transfer coefficient along the film surface. Again,
there is no rationale behind his formula except that
the temperature variation so determined is claimed
to be in good agreement with the experimentally
measured resulis.

The best way to resolve this question is to formulate
the problem in such a way that the development of
the boundary layer and the evolution of the film or
fiber are determined simultaneously. Acierno et al
(1971) have treated the boundary layer and heat
transfer around the polymer fiber by using a Pohl-
hausen type integral approximation. The resulting
heat transfer coefficient is then employed in the
calculation of the fiber radius. However, they have
neglected the effeclt of the variation of the fiber
velocity along the fiber on the growth of the
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It is found that the heat transfer coefficient can either increase or decrease

boundary layer. The coupling between the boundary
layer and the fiber is not complete. As a result,
their conclusion that the Nusselt number decreases
along the fiber, is in contadiction with the empi-
rical formula given by Kase and Natsuo (1967). '

Here, we shall study the boundary layer over an ex-
tending film by an integral approximation taking
into account the interaction between the variations
of the properties of the film and the growth of the
boundary layer. Similar technique can be applied
to the fiber case.

2 FORMULATION OF THE PROBLEM
Let us consider a two dimensional polymer film being

pulled by a tension g at one end. Figure (1) shows
the schematic definition of the problem

Air Boundary Layer

Wo

Figure 1 ochematic definition of the problem

The viscosity of the fluid is so high that the
inertia of the film, the air drag as well as its
own weight are small in comparison with the tension
q. The continuity and the momentum equations can
be written as

HU = Q (2)
L (T)E = g (3)

where U is the velocity of the film and u(T) is

assumed to be of the form of the equation (1). Now,

the temperature of the film may vary along the film

due to the heat transfer at the air-liquid inter-
face. The following equation describes the varia-
tion of the temperature of the film.

dT aT*
MACax = EK(W)EO (&)



where M and C are the density and the heat capacity
of the polymer melt, k¥ and T* are thermal conducti-
vity and the temperature of the air respectively,
and Y stands for the coordinate perpendicular to
the film surface. For air, the usual boundary
layer assumptions will be made and the governing
equations become

awx ow
Ei-*‘5§x =0 (5)
9w,
3 5l X
(Ni5§+wyaY)wx = Vay? (6)
9 9 Kk QT
('x?ﬂi"’wyay = oC_ BT (7)

where (wx,wy) are the components of the velocity of

the air, p and v are the density and the kinematic
viscosity of the air respectively. The thickness
of the film is so small that the induced pressure
gradiant along the film surface is assumed negli-
gible. The boundary conditions are

H(0) = Hy; T(Q) = Ta; wx(o,y) = Wo
wx(x,m) = Wo3 wx(x,o) = u(x); wy(x,o) =0

™(0,Y) = TH; T*(X,0) = T(X) (8)

1]

where W, and T§ are the free siream velocitiy and
the free siream temperature of the air respectively,
Ho and T, are the thickness and temperature of the
film at the exit. Since the boundary layer equa=
tions are parabolic, the equations (2) to (8) con-
stitute a mixed initial-boundary value problem.

The variables are then non-dimensionalized by the
following reference quantities: W, for the velo-
cities, 4u(To)@/a for the length, T§ for the tem-
peratures, H, for the thickness of the film and
p(Tu) for the viscosity of the film. The system of
equations reduces to

RS < u (9)

dt at*
dx = “(az )z=0 (10)
e )

2 ) 92
(wxax+wy5;)wx = 9z 'x (12)

T

(Wx8x+wyaz)t = P, 9z2 (13)

u(0) = uo; t(0) = to

WX(O,Z.} = '1; wx(x,m) =1

(14)

yx(x,o) u(x); wy(x,O) =0

t*(O,z) = 1; t*( '(,m) =
t*(x,0) = t(x)

where the variables in small letters now stand for
the non-dimensional variables for the cOrreipunding
dimensional variables in capital letters. y(t) is
the nondimensional viscosity of the polymer melt,
and ithe other dimensionless parametlers are P, the

; 2k
Prandtl number for the air, ¢ = ﬁaaﬂg and the

Reynolds number defined as

Re = &ﬁilﬁ%ﬂ!a (15)

In the equations (9) to (14), the standard boundary
layer coordinate siretching
A

— RZ
z = Rey

(16)
is already employed.

In order to make an engineering estimation of the
heat transfer rate at the interface, the integral
approximation seems to be the most powerful and
effective tool in hands, Letl us integrate the ega
equations (12) and (13) across the boundary layer
and manipulate the resulting equations by the well
known procedure.

da:fie wa

o= (1-wx)wxdz = 5;-)z=0 {17)
(]

L[ (1pr)w az = (3 (18)

dx p_ 0z ‘z=0
° P

The velocity profile and the temperature profile

across the boundary layer are assumed io be third

order polynomials.

. uraqn+azn +asn’ (19)

t* (20)
where 7 = z/ﬁ(x) and ﬁ(x) is the boundary layer
thickness to be determined. The thermal boundary
layer and the momentum boundary layer are consi-
dered of the same thickness, but the coefficient

b1+ which represents the non-dimensional thermal
gradient at the interface is left as a variable and
will be determined through the solution of the
resulting ordinary equations. Since the Prandtil
number of the air is of the order one, the treat-
ment given albve seems 1o be reasonable. Any dif-
ference beitween the detail thermal and velocitly
profiles will project itself on the coefficient bq.

t+bsn+banZ+bsn”

By satisfying the boundary conditions at n = 1 and
determining the remaining coefficients -in the equa-
tions (19) and (20), the equation (17) and (18) can
be reduced to the following

S [8(3+hu) (1-u) ] = FE(1-u) (21)

o

%El = "ETE%:§7[§E3+[b1(2u+5)+(18u+24)(t_1)]%;

2 e
+5[2b1+18(1:-‘|)]g&+6[18u+24%] (22)

The equation (10) can be written as

dt _ _sbs
= Ero (T (23)

The equations (9), {(21), (22) and (23) describe the
evolution of the variables u, t, 0 and by. They
can now be easily integrated numerically.

3 NUMERICAL SOLUTIONS

It is found that u = 1 is a singularity of the
equation (21). This seems to be the inherent dif-
ficulty of the integral approximation in ireating
this type of boundary layer. Since the velocitly
profile is parameterized by a third order polynomial,
the boundary layer musi disappear as the velocity at
the interface approaches that of the free siream air.
There is no way for the boundary layer thickness 0
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to adjust iiself to a definite value. For this dif-
ficulty, we shall examine two extreme cases, namely
the case of a strong air flow for which u < 1 every-
where and the case of a weak airflow i.es. u > 1.

The transition case can only be treated by solving
the exact system of parabolic partial differential
equations.

At the leading edge, & and by are found to behave
as

168x_\&
S Azl (242
(to-1) (Guo+l)p (
i prizuo+5)+(3+1@} )

The above relations are used in the numerical calcu-
lation in order to stay away from the leading edge
singularity,

The Nusselt number Nu based on the characteristic
1ength 4u(T,)Q/q is related to the Reynolds number
and the variables 8, by and t by the following
relation

(26)

(3)-

Figur$ (2) and (3) show some typical variations of
Nu H;f and the film velocity u along the film.

Figure (L) shows the growth of the boundary layer
thickness.

L CONCLUSIONS AND DISCUSSIONS

The resulits of the numerical solution show that for
the strong air flow, the Nusselt number is essen-
tially that of aflate plate solution when the sur-
face velocity is small in comparison to the free
siream velocity. But when the surface velocity,
which increases along the film surface, reaches
some significant portion of the free siream velo-

LG,

Figure 2 Nu Re VS. X

1: Uo = 2.2cm/sec, W, = 2.0cm/sec, Q = 0.11cn?/sec,
Ho = 0.05cm, To = 450°K, to = 300°K, L4u(To)@/a
= bem.

2: Same as 1 except W, = 200cm/sec.

3: Flow over a flate plate.

10
X
Figure 3 Variation of the velocity of the film

case 1, 2: Same as Fig. 2.

Figure 4 The variations of the Boundary layer
thickness

Case 1, 2: Same as Fig. 2.

city, the Nusselt number has a considerable inerease
over that of the flate plate solution. However,

the most interesting case is the weak air stream.
The Nusselt number increases along the film surface
after the leading edge effect has fadeds Physically,
this can be explained as follows. When the surface
velocity exceeds that of the air stream, the cor-
responding displacement thickness is negative.
Furthermore, the magnitude of this negative dis-
placemeni thickness is increasing along the film
surface due to the increasing surface,velocity.

The boundary layer is continuously supplied by the
cool air outside. The vorticity and the thermal
energy are convected inward by the negative vertical
velocity and the growth of the boundary layer is
suppressed. Its thickness can even become thinner
downsiream. This suction effect and the diffusion
mechanism of the vorticity and the thermal energy
are competing against each other. When the tempe-
rature of the film is far above that of the solidi-
fication, the surface velocity increases rapidly

and the suction effect is dominant. The heat
transfer coefficient increases accordingly. How-
eﬁer, it is expected that the diffusion mechanism
will take over when the temperature is lowered to



that near the solidification. In this case, the
heat transfer coefficeint will decrease along the
film surface.

Similar analysis of the boundary layer surrounding
a polymer fiber can be performed. The essential
conclusions given above for the film will noi be
changed. Kase and Matsuo (1967) give an empirical
formula for the heat tiransfer coefficient K along
a polymer fiber as

b

s %

K = 0.473x10°°Q U

[

(27)

Increase in the heatl transfer coefficient due to
increase in U is clearly shown in the above formula.
Acierno et 21 (1971) give some experimentally
measured heat transfer coefficienlts along a fiber,
Their results show that K remains a constant for a
certain distance and then decrease rapidly. These
seemingly anomalous and contradictory observed
phenomena may possibly be explained by the present
theory. The formula given by Kase and Matsuo (1967)
may have been based on the data collected at the
early stage of the evolution of the boundary layer
where the temperature of the fiber is still far
above that of solidification. On the other hand,
the measurement given by Acierno et al (19?1) may
have been collected at the later stage of the deve-

lopment where the iemperature is lower to that near
solidification. It is concluded that the heat

transfer coefficient along the fiber or the film is
a property of the flow field. It is not a local
property. In mathematical simulation of the process,
we must simulate the evolution of the boundary layer
simultaneously.
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