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SUMMARY This paper includes a method how to use experimental, two-dimensional cascade
three-dimensional design of axial flow compressor blades.
suitable transformation of stream surface into a two-dimensional plane.
mated from a through flow problem, are introduced to represent inclination of the stream surface

ation of axial velocity through the rotor.
variation.

1 INTRODUCTION

As increasing the pressure ratio of an axial flow
compressor, a more reliable calculation is requested
to the design of blade rows in which the annulus
wall has frequently significant inclination to the
axial direction and the axial velocity changes
through the rotor. A method of the quasi-three-
dimensional analysis proposed by Wu (1952) can be
applied to such a design problem as well as a direct
problem. A through flow in a meridional plane is
determined by the streamline curvature method(Smith,
1966 or Novak, 1967) or the matrix method (Marsh,
1966), providing flow rate and specified enthalpy
and loss distribution in the radial direction. A
blade element is selected on an average stream sur-
face which is formed by revolution of a meridional
streamline about the rotating axis. Some calcu-
lating methods of the quasi-three-dimensional cas-
cade flow (Katsanis, 1965, Wilkinson, 1970, Braem-
bussche, 1973) may be available for the blade selec-
tion if iterating procedure is carried out by a big
computer. As well known, however, the use of exper-
imental cascade data for the retarded blade rows en-
ables to work out a more reliable design than a the-
oretical calculation. Unfortunately, most of avail-
able cascade data are obtained in the two-dimen-
sional flow and the use of them has been restricted
to the case when the average stream surface is re-
garded as a cylindrical one. An expedient method
how to use the two-dimensional cascade data in the
case of inclined stream surface and varying axial
velocity has been presented in this paper.

2 NOTATION

o

: minute thickness of average stream surface
(Fig.1)

: camber of NACA-65 series profile

: circulation parameter (=tanf; - tanB;)
: total enthalpy

: chord length

: distance along mcridional streamline
: bound source on blade chord

radius from axis of rotation
co-ordinate along blade surface
spacing of cascade

speed of blade

velocity induced by u and T

relative fluid velocity

distance along chordwise direction

axial coordinate in the transformed plane
distance normal to blade chor
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data for a quasi-
A theoretical analysis has been performed by a
Two parameters, which can be esti-
and wvari-

With these parameters, a camber and a stagger which are selected
from the cascade data can be corrected easily for the stream surface

inclination and the axial wvelocity

Yo ¢ y-coordinate of camber line

Y4 ¢ a half of blade thickness

Y : tangential coordinate in the transformed plane
: distance along axial direction

]

B : relative flow angle

Yp + bound vortices on blade surface or blade chord
r : distributed vortices on the transformed plane
68 : angular coordinate about axis of rotation

U : distributed sources on the transformed plane
V : stagger angle

£ : axial-velocity variation parameter (AVP)

p : density of fluid

¢ : solidity of cascade

¢ : camber angle

® : local flow rate coefficient

¥ : streamline inclination parameter (SIP)

Y : stream function

Y : local enthalpy rise coefficient

w : angular velocity

Subscript, Superscript and Prefix

b : bound vortices and sources

m : component in meridional direction

2 : chordwise component

X : axial component on the transformed plane

y : component normal to chordwise direction

Y : tangential component of the transformed plane

z : distributed vortices on the transformed plane

U : distributed sources on the transformed plane

6 : peripheral component

0 : cascade data in the case of u=7=20

1 : inlet of cascade

2 : exit of cascade

© :; vector mean velocity

% : reference radius

- : average

A : variation owing to streamline inclination and/or
axial velocity change

3 ANALYSIS

In a quasi-three-dimensional design of an axial-flow
compressor, meridional and peripheral velocities wpy
and wg can be evaluated as the functions of radius »
and the meridional streamlines are determined by a
solution of through-flow problem, providing that the
distributions of enthalpy H(r) are specified before
and behind the stages. Then, a blade-to-blade prob-
lem is to be solved on each average stream surface

which is obtained by revolving the meridional
streamline about the axis of rotation (See Fig.l).
For the convenience of calculation, a local flow



rate coefficient ¢ and a local enthalpy rise coeffi-

cient ¥ are defined on each stream surface as
follows:
9 = (riwgy +raipy,) [ (2réu*) (1)
¥ = (Hy -Hy)/(u*2/2)
= {uz (uz +wg,) = uy(uy +wgy) H (u*2/2) 2)
For steady, isentropic flow on the surface, the
differential equation is given by (Vavra 1961)
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where the stream function Y is related to the rela-
tive velocity as

wg = (1/bp) (3Y/am),  w, = -(1/bp) (Y/rab) (4)
With the relations of
dx/dm = r*/vr, d¥/rd6 = -r¥/r (5)

(3), (4), (1) and (2) are transformed conformally
into the XY plane (Fig.3) as follows:

2 2
4L o) 3 , 3(bp) _‘P_
ol ax ox T ar ar? (6)
wy = (2/r*uy,, wy = -(2/r*wgy N
o = me/u* (8)
¥ = 20(f+y) (9

where, Wuy (Wyw) = (wX1+w 2)/2 F = Wy, ~wy,) [y
and ¥ = {(1‘-1/1"3‘{)2 - (r1/r*)? i

If the right hand side of (6) vanishes, the equation
of motion is identical to that for irrotatiomal, in-
compressible, two-dimensional cascade, and the blade
element can be selected by use of cascade data so as
to satisfy the equivalent velocity diagram as shown
by dash-dotted lines in Fig.2. 1In practical cascade,
however, the right-hand side is not zero. Therefore
the value of f in such cascade may differ from that
for the two-dimensional cascade. This effect can be
evaluated by replacing the distributed vortices Z(X)

equivalent
3 o velocity
§, m-r@ surface diagram
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for the first term and sources U(X,Y) for the second
term

Z(X) = 2u(z/r*)® (dr/dn) (10)
o _ 1 3(bp) 3V _ 3(bp) .l
H(X,T) Bzt o oY = oY (an

According to a method of singularity, a flow through
a cascade is built up by placing bound vortices Yp
along the blade surface. Taking a circulation along
a circuvit indicated by a dash-dotted line in Fig.3,
the circulation parameter f is written by

X
i ST ) g
T Uey By §de3 Weoyr chdx (12)

As the bound vortices Yp,, which denote the bound
vortices in the case of £=1=0, change to Yb0'+ANbC
when %0, u=0 and to Ybo +Ayb when £T=0, u%0
order to satisfy the boundary condition on the blade
surface, the first term of the right-hand side of
(12) can be represented as [ +Af +Af where fo.,
Af and Af), correspond to Yp,, AYE and AY respec-
tively. Tﬁe second term becomes X by integration
after substituting (5) and (10). Then, it £follows
that

[ = fo + My + Afy - X

Thus, the circulation parameter is to be different
from f by Af +Af,, =%, 1f the design camber ¢ and
stagger Vg are selected from the cascade data so as
to satisfy the equivalent velocity diagram in Fig.2.
Therefore, the camber and stagger should be cor-
rected by A¢ and Av so as to hold the following re-
lation

(13)

= foldo +4d, vo+8V) + Afr(do +4d , Vo +4AV)

+ Afy (B0 +49 , v +4V) - X (14)
Once corrected geometry of cascade 1s obtained by
(14), it should be transformed into m- 70 surface by
use of (5).

However, it may be advisable to transform 2 -7r%0
surface when the influence of sweep in blades should
be considered. Smith and Yeh (1963) proved that the
correct cascade performances for the cascade lying
on the m-r0 surface were obtained by analysing the
flow past a projected view of the cascade looking
along the local bound vortices Yz at the actual flow
on the m=-10 surface. This conclusion is certainly
self-evident for untwisted linear cascade of infi-
nite span and implies a technique for proceeding
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Figure 1 Meridional plane and

average stream surface on the X¥

Figure 2 Velocity diagram

Figure 3 Flow field on the

plane XY plane
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even with cascade of blades twisted about a center
line. Since the direction of blade axis is usually

perpendicular to the rotating axis, the directions
of vector ?b are approximately identical to the ra-
dial direction. Therefore, the projection AA in
Fig.1l should be analysed. For this reasom, dm, rdf,
Wy and wg in (4), (5) and (7) should be replaced by
dz, r*d8, w; and (r*’r)ug respectively when the
sweep effect is taken into account.

4 CALCULATION OF CORRECTING VALUES

In a direct problem (prediction of performance), Afy
can be evaluated exactly by solving Poisson's equa-—
tion. But it is warrantable to obtain an approxi-
mate solution by replacing averaged vortices T for C
as the inclination of stream surface is not large in
a conventional axial-flow machine (Inoue-Mori, 1971).
On the otherhand, it is difficult to get an exact
solution for Af) since u includes an unknown func-
tion ¥ as shown in (11). Several approximate solu-
tions have been proposed(Mani-Accosta, 1968, Shaalan-
Horlock, 1968) and it may be reasonable to evaluate
Afh by assuming uniform distribution of source T
(Kubota, 1959) when the variation of axial velocity
is small.

In the present method, therefore, the solutions for
the uniformly distributions of L and U are applied

to the design problem, since T and U are given by
the throughfflow solution.

Xy

23sa
= cp gl Lo Uk ps-my
el .[chdx T Haly o erRe s
= (wy, ~wy, )/ (X2 - X1) (16)

Now, the following dimensionless parameters are de-
fined as 'streamline inclination parameter (SIP)'
X and 'axial-velocity variation parameter (AVP)' &
in relation to (15) and (16).

X = TX2-X1) fugy = {(22/7%)% - (21/r%)2}/0 (17

£ = W(X2=X1) Juoy = (Latbpy—1 100y, ) [ (@Hu*d) (18)

0f course, the former is the same definition in (9),
(13) and (14).

In order to solve the equation (14), Schlichting's
three-terms method is adopted, in which a blade is
replaced by bound vortices and sources along the
chord line represented by 3-terms Glauert series
(Scholz, 1965). The coefficients of Glauert series

are decided so that the flow field ﬁ“d ced by the
bound vortices and sources satisfy the goundary con-

ditions at three points on the blade chord. Here,
velocities induced by the uniformly distributed vor-
tices and sources should be superposed on the flow-
field. Now, consider another Cartesian co-ordinate
system in which the x-axis is taken in the chordwise
direction as shown in Fig.3. On the blade chord,
the x and y components of the induced velocities by
T and U can be represented as

Vg Wy = X(%/1) tanv/ (1 + tanvtanB,,)

Ve /W, = X(2/1) /(1 + tanvtanB,)
e (19)

vux/wmx = E(x/1)/ (1 + tanvtanB,)

wuyﬁqmy = —E(x/1)tanv/ (1 + tanvtanf,)

Thus, the boundary conditions become as
Yo Yooy ot ey Py

dr W +wphg+Vry + Uy

(20)
dg _ %
dz Ueg tWpg +Vrp Vg

where Y. and yz denote the y-coordinates of camber
line and a half of the blade thickness; Wy and Yooy
are the x and y components of the vector meam ve-
locity, and wp, and wWpy are the x and y components
of velocities induced by the bound vortices and

sources which are linear functions of the coeffi-
cients of Grauert series.
Firstly, the inlet flow angle 8% and the turning

angle AB* at impact-free condition are calculated
for the cascade geometry (¢g, Vo) and ¥=E£=0. Next,
adding X and &, the camber angle ¢ and stagger V are
so varied as to keep the impact-free inlet and
turning angles equal to the initial values by iter-
ating calculations. A procedure to get rapid con-
vergence has been presented (Ikui et al, 1977).

3 EXAMPLES OF CALCULATION

The above-described method is to be applied to the
case when the cascade data have been prepared. In
this study, thereupon, NACA 65-series compressor
blades have been selected as calculating examples,
since massive systematic data are widely used in
practical design (Herrig et al., 1951). In these
blades, ¢ is replaced by an equivalent camber angle
which is defined as the center angle of a circular-
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Figure 4 Correction for SIP
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Figure 5 Correction for AVP
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arc passing through the leading and trail-

ing edges and the point of maximum camber e Ci. = 1.6 —t =03 19 o _'10 — (Z+E)
at the mid-chord 1locatiom. Hence, with S D053 ° g
the relation of a5 vl q i A 3

¢ = 4tan”  (0.1103 7o) 'guc \\ Sty ": 05k

15
the correcting values of ¢ can be con- 05
verted to those of ¢7,. SOS==C L L refien]
- ]
Corrections of design camber and stagger 00
are shown in Figs.4 to 8 for various con- 1"+ / 10 2+
ditions. Figs.4 to 7 indicates the cor- i e 05 >
rection when the design condition is af- ¢ e <31'_
fected by SIP or AVP individually. It is L T
found that the correction of camber is =Hb il o &
significant since a variation of Ac7,=0.04 S o
corresponds to a difference of Ap=1°. On e ! L 1 R | |
-20° 0° 20° 40° 60° 80° . . :

the other hand, the values of Av are less
than 1° in most cases. Acy, increases
linearly with SIP and AVP (Figs.4 and 5).
For positive SIP, Acy, reduces with solid-
ity 0 and stagger Vv, but it changes little
with camber ¢7, (Fig.6). As to correction for
positive AVP, Acy, increases with stagger V except
in the high stagger region, but changes little with
solidity ¢ (Fig.7).

Fig.8 shows the modification of design camber and
stagger in the case when both SIP and AVP must be
considered simultaneously in the design. Dash lines
indicate the sum of two-correcting values, of which
one is calculated by considering SIP only and
another AVP only. Namely, the reasonable correction
may be obtained by the linear addition, when SIP and
AVP are not so large (less than about 0.3).

Considering the above fact and the fact Acy, and Av
have the linear relations with X and E(Figs.4 and 5),
the following relations are available.

e (6]
e 3(31")*;( ' a(a?)i
X (21)
=210V b O
Av = 3% 4-—§g£

If the gradients 3(e7p)/dX, etc. are calculated be-
forehand for wide range of cascade geometry and

presented in the form of the correction charts, it
must be more convenient for the design. They have
been prepared by the authors.

6 CONCLUSION

In this study, a quasi-three-dimensional design of

axial flow compressor blades by use of cascade data
is presented. And the method is given how to cor-
rect the camber and the stagger which are both se-
lected from the two-dimensional cascade data, by
considering the variation of the streamline inclina-
tion and the axial-velocity, before and behind the
rotor. The authors have the correcting diagrams
for NACA 65-series compressor blades.
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