6th Australasian Hydraulics and
Fluid Mechanics Conference
Adelaide, Australia, 5-9 December 1977

The Streamline Direction at a Shock Wave in the
Deflection-Speed Plane for a Relaxing Gas

H. G. HORNUNG
Senior Lecturer, Physics Department, Australian National University

SUMMARY

gas on the streamline in the 6§-V plane is considered.

The effect of relaxation after a curved two-dimensional shock wave in an inviscid, adiabatic
The slope in the 6-V plane of the streamline at the

shock is shown to be independent of the relaxation rate and is everywhere non-positive for a straight shock,

so that a Crocco point does not exist.

If the shock is curved, however the streamline is strongly curved

in the relaxation region and eventually leaves it at a direction qualitatively similar to that correspon-

ding to frozen flow.
on the 8-V map is discussed.

1 INTRODUCTION

In a large range of conditions of practical interest
shock waves may be treated as mathematical discon-
tinuities, outside which the medium behaves like a
perfect gas with translational and (for a diatomic
gas) rotational degrees of freedom only. At suffi-
ciently high speeds, however, the temperature after
the shock is so high that vibrational degrees of
freedom become excited or indeed that the gas dis-
sociates. If the rate of dissociation is fast
enough for the relaxation length to be small compar-—
ed with the length scale of observation, the gas may
be considered to be in thermodynamic (including
chemical) equilibrium everywhere except in a thin
shock. If the relaxation length is comparable with
the observation length scale, however, the shock
structure consists of a virtually discontinuous
translational-rotational shock followed by a non-
equilibrium region of finite extent in which vibra-
tional and chemical equilibrium is gradually
approached. The mechanism of this approach to
equilibrium requires each particle to undergo a
large number of collisions with other particles,
whereas translational and rotational equilibrium is
reached in 2 or 3 collisions.

In the following, the gradient of any flow variable
along a streamline just after the translational
shock is of particular interest. In the case of
frozen flow (no vibrational or chemical change) it
will be shown below that this gradient is pro-
portional to the shock curvature, so that it is zero
for a straight shock. However, the presence of a
finite-rate chemical reaction - which may be thought
of as a distributed energy sink in the case of
dissociation - causes the gradient to be finite even
for a straight shock. The present work aims at
studying the implications of this gradient on the
features of two-dimensional, inviscid, adiabatic
flows through shock waves with finite rates of
relaxation. For such flows it is often convenient
to map the physical plane into the deflection-speed
plane. For this purpose the streamline direction

at a shock in the deflection-speed plane is an im-
portant variable and its dependence on the relax-
ation rate is therefore of interest in the present
context.

2 DERIVATIVES ALONG THE STREAMLINE

Take x' and y' as coordinates parallel and normal
to a shock of curvature k' (x') and making an angle
¢" (x') with the direction of the uniform free stream
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The effect of a constraint, such as the intersection of a body surface with the shock,
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Figure 1 Notation

of velocity V_ (see figure 1). k' is taken to be
positive if the shock is convex towards the upstream
direction. Let u' and v' be the components of vel-
ocity in the x' and y' directions respectively, p'
and p' be the pressure and density, and h' be the
specific enthalpy of the gas. Scale the variables
according to
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where the subscript « refers to conditions in the
free stream and k' is the shock curvature at a
reference point. Introducing a nonequilibrium
variable o (e.g. the dissociation fraction), the
caloric equation of state is of the form

(2)

The conservation equations for momentum, energy and
mass in these curvilinear coordinates are

h = h(p,p,a).

uux + (l-ky)vuy - kuv + p./p = 0,
= 2 P AL
uvy, + (1-ky) vvy + ku® + (1l=-ky) py/p 0, (3)
h + (u2+v2)/2 =0,
= 0.
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The subscripts denote partial differentiation. If
the third of eqguations (3) is differentiated with

isi i T terms like h p , h o
respect to y (this involves Pyr Byl



etc.) and with respect to x, the set (3) may be
solved explicitly for Pyr Uys Yy, P in terms of
the variables themselves and their x-derivatives
and of derivatives of h (see Hornung, 1976). The
substantial derivative may be formed by combining
x and y derivatives according to
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where t denotes dimensionless time (t =

evlik!
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with origin at the shock).

The results for the

derivatives of p and p are
2
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Note that the x-derivatives occurring in G are all
proportional to k, so that terms like p,/k are
independent of k, and are functions only of free
stream conditions and ¢. Hence G depends on k only
through the term in the denominator, and this
dependence becomes negligible for small y, i.e.
near the shock. (Hornung, 1976).

The form of the time derivatives along the stream-—
line can now already be seen from equation (4).

The effect due to the shock curvature, which is
proportional to the gquantity kG, combines with a
term proportional to the relaxation rate, da/dt.
The same applies to the density derivative. The
guantity G is seen from (6) to be a complicated
function of the flow variables and their x deriva-
tives. It is grouped together in this form because
in some cases (small relaxation length) it may use-
fully be considered to be constant over the non-
equilibrium region near the shock.

To illustrate the two limits k = 0 and dua/dt = O,
it is instructive to form the quotient of the two
equations (4):

hmdu/dt +kp hp G/v
hqdor./dt -kop | (hp-l/p)g/(r

ve (7)

d

dp
For a straight shock in relaxing flow (k = 0,
do/dt # 0) dp/dp along the streamline is seen to be
independent of the relaxation rate do/dt and is
equal to v2. Conversely, for a curved shock in
frozen flow (k#0, da/dt = 0) dp/dp is independent
of k and G, and is given by

h
e (8)
ap TR

where a_. is the frozen speed of sound. This ex-
presses the expected isentropic flow condition.

In a similar way substantial derivatives of other
quantities may be formed. In particular, the
condition for the conservation of momentum in the
streamline direction requires

S O -
v T i o e (9)
where v2 = v2 + u2. The streamline curvature,

d8/ds, may be determined by differentiating the
streamline deflection
§ = ¢ -

artan ~ , (10)
u
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with respect to the distance along the streamline,
s(ds=Vdt) to give after some manipulation
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£
(1)
3 MAPPING FROM THE PHYSICAL TO THE §-V PLANE

It is convenient to introduce a relaxation rate
variable
v do

iy kph_DVZ R @t (123

w =

From (9) and (11) the quantity dé/dV may be formed:
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This gives the slope in the 8-V plane of a stream-
line near the shock wave. The streamline may now
be mapped into the 8-V plane, and relaxing and
frozen flows may be compared for straight and
curved shocks.

Consider first a frozen flow after a straight shock
in a uniform free stream. The conditions after the
shock are uniform, 8§ and V are both constant, and
the whole of the flow downstream of a shock of
given incidence ¢, maps into a single point (P, say,
in figure 2). The free stream maps into the point
F at (1,0). As ¢ is changed, P traces out the
locus of conditions after the shock as indicated in
figure 2. V is seen to be double-valued for a
given §, the maximum deflection point M separating
the strong shock branch from the weak one. At some
point S to the right of M the sonic speed ag is
equal to V. At the point N, ¢ = %-, i.e. the shock
is normal to the free stream direction.

Figure 2 Locus of shock conditions in the §-V
plane. P - general point on locus, F - free stream
N - normal shock, S - sonic point, C - Crocco point,
M - maximum deflection, J - point where G = 0.
Arrows indicate direction of streamline at a curved
shock in frozen flow. Dotted arrows indicate
directions of streamlines at a straight shock in
relaxing flow.

Now let the shock be curved and the flow remain
frozen: The flow will then accelerate along the
streamline, so that the whole of the streamline



after the shock no longer maps into a single point,
but into a line. Egquation (13) is able to give the
slope of this line at the shock as

a8 N v S CI I
[dv] = = Vv [1 =~ uG pk (a2 = vz} 7 (14)
w=0 £

where w has been put = 0 for frozen flow. The
expression on the right of (14) has three zeros and
one pole in the range of the curve shown in figure
2. Two of the zero's occur when u = 0 at N and F
and are of no particular interest. The third
corresponds to the zero of the expression in sguare
brackets and occurs at the familiar Crocco point C
which always lies between S and M (see e.g. Guderley
1962). The pole occurs at J, where G passes through
zero. Between F and C, (d&/dv)w=0 <0 but finite.
Between C and J, (d6/dV)yu=p >0, and between J and N
it is negative again. This behaviour is indicated
in figure 2 by the thin arrows representing the
streamline direction at the shock in frozen flow.

The above results are, of course, well established
and discussed in detail in textbooks on gasdynamics.
However, (13) may now be used to see how the stream-
line direction is modified by the presence of a
relaxation process. Consider first the straight
shock with finite relaxation rate, that is, the
limit w = « . Clearly, (13) gives

das .
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Although this result could have been obtained
directly by differentiating (10) with respect to V,
it is of some importance, because it shows that in
the limit w = = the streamline slope in the §-V
plane is independent of the relaxation rate, and,
since u, V and v are all 2 O, (dﬁ/dV)m=Do £ 0 every-
where. The streamline directions for w = = are
indicated in figure 2 as dotted arrows. Moreover,
since k = 0 for a straight shock, the term (1-ky)
which has been considered equal to 1 in the deri-
vation of (13) is exactly 1 throughout the flow,

and (15) applies throughout the relaxation layer.
That part of the streamline which is in the relax-
ation layer is mapped into a line in the 6-V plane,
one end point of which corresponds to the point on
the shock and the other representing the whole of
the (straight) streamline downstream of the relaxa-
tion layer, that is, the eguilibrium condition after
a straight shock. Let this point be labelled E,

see figure 3. If the relaxation is endothermic,
such as for example in dissociating flow, E lies
outside the curve P, and conversely, for exothermic
relaxation, such as occurs in a detonation wave, E
lies inside P. By changing the shock incidence, E
is made to trace out a curve corresponding to the
locus of equilibrium conditions after a straight
shock. This curve is shown for the case of endo-
thermic relaxation in figure 3.

4 RELAXING THE CONDITION w = <«

Equation (13) may be written for w + « as
as TR0 I O s S
l:dv:l W [1+w u pk Gz VZ):[
wr * £

Note that to first order in 1/w this is independent
of G. This limit corresponds to the case when the
relaxation distance is small compared to the shock
radius of curvature. However, as the distance from
the shock increases, the relaxation rate and there-
fore w decreases also, so that (16) is no longer
appropriate but must be replaced by the limit w + O,

Vv

Figure 3 ©Locus of equilibrium conditions (E) after
a straight shock in relaxing flow. Full and dotted
arrows indicate streamline directions at the shock
(P) for w = 0 and w = = respectively.
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which asymptotes to (14). For a slightly curved
shock with a fast relaxation rate the streamline
therefore leaves the shock in a direction close to
the dotted arrow corresponding to w = = and then
curves over to the direction represented by w = 0,
on the equilibrium curve (E). Since the shock is
curved, the flow along the streamline continues to
accelerate in the eguilibrium region and is there-
fore not mapped into a point but inte a line. This
line must leave the equilibrium curve, E, at a slope
given by (14), so that the points M, C, S and J have
equivalents on the equilibrium curve.

Let the value of w on the shock be . The behaviour
of the streamline in the relaxation region may then
be described gqualitatively as shown in figure 4 as

a function of Q. The limit @ = = (straight shock)
gives the curve described by (15) and the limit

Q = 0 (frozen flow) is described by (14). . Between
these limits figure 4 shows a number of intermediate
curves which must asymptote to (14) at the equil-
ibrium curve. These intermediate curves may be
thought of as flows after shocks in a given gas with
various values of curvature.

It remains to point out that figures 4 and 5 are
drawn for endothermic relaxation with a convex shock
or for exothermic relaxation with a concave shock,
i.e. for positive w. The above equatiocns apply
equally for negative w, when the equilibrium curve
lies inside the shock curve and the other arrow
direction applies throughout.

5 CONSTRAINED SHOCK POINTS

So far, only free shock points have been discussed,
that is, points on a shock wave which do not coin-
cide with the intersection of a body or another

shock wave with the shock under consideration. An
interesting example of the case of a constrained

shock point is the case of an attached shock at the
leading edge of a sharp body. At the leading edge,
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Figure 4 Behaviour of the streamline in the relax-
ation region for various values of Q. Q = o :
straight shock, @ 0 : frozen flow. Note that
streamlines leave the equilibrium curve (E) at a
direction like that for § 0. The numbers on the
§ and V axes are shown merely to indicate the
approximate region. Significance of dotted arrow
and P as in figure 2.

the streamline curvature is constrained to be equal
to the body curvature. The streamline curvature
must also satisfy equation (11), however. Evidently
both conditions cannot be satisfied by a straight
shock unless the body curvature is just right. The
flow satisfies the two conditions by adjusting w to
suit. That is, for a given relaxation rate, the
shock curvature adjusts itself to provide the right
streamline curvature to match the body. For example,
for a straight wedge, ddé/ds 0, and (11) gives
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This result can be used to measure relaxation rates
by measuring the shock curvature at the leading
edge of a wedge, as has been pointed out by Becker
(1972). It has been used to measure the dissoc-
iation rates of nitrogen up to 15000 K by Kewley
and Hornung (1974). To illustrate this behaviour,
the mapping of the flow near the leading edge .of a
wedge is shown in figure 5.

Other examples of constrained shock points include
the intersection of two shock waves, and three-
shock points such as occur in Mach reflexion of
shocks. The influence of relaxation on such points
is more complicated than the wedge tip and is be-
yond the scope of the present considerations. The
means by which the flow adjusts itself to the con-
straint, however, must be by adjusting w.

PHYSICAL PLANE

Figure 5 Flow near the constrained shock point at
the leading edge of a wedge with an attached shock.
Conditions in the equilibrium region E are uniform,
so that it is mapped into a single point E' in the
8-V plane. At the constrained point A, w adjusts
itself to give zero slope for the line A'E'. At

the shock has approached constant ¢, so that the

streamline leaves X' in the direction of the dotted

arrow. The whole of the flow above X is mapped into
the line X'E'.

X

6 CONCLUSIONS

Two important results of considering relaxing flows
in the 8-V plane are, firstly, that the slope of
the streamline d§/dV after a straight shock is
independent of the relaxation rate and is non-
positive for all values of the shock incidence and,
secondly, that constraints imposed by a second
shock or a body intersecting the shock are satis-
fied by the value of w adjusting itself to match
them. The flow achieves this by adjusting the
shock curvature. Thinking of relaxing flows in the
8-V plane greatly aids the understanding of complex
relaxing flow situations such as shock reflexion

or shock detachment, both of which differ signi-
ficantly from the corresponding frozen flow situa-
tions. These situations are discussed in some
detail elsewhere (see Hornung and Kychakoff 1977,

Hornung and Smith, 1978).
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