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SUMMARY

Recharge with clogging from an infinitely long strip basin to a finite aquifer and the decay of

the groundwater mound in such a domain is solved for both linear and non-linear Dupuit-Forchheimer theories.
The comparison between the theoretical results and experimental data in the non-clogging case suggests that

the non-linear model is more accurate when the time and
is also made in the optimal period over which the basin
indicate that under such a recharge condition a maximum

1 INTRODUCTION

The maintaining or raising of groundwater levels by
artificial recharge provides a source of water for
irrigation, industrial and domestic use and can also
retard seawater encroachment in coastal areas. For
confined aquifers artificial recharge is normally
injected through wells whereas for unconfined aqui-
fers it is usually more efficient to use surface
water spreading through channels and pits. Only the
unconfined situation is considered here.

In practice the artificial recharge process invari-
ably results in clogging of the channel or pit due
to air entrainment, the presence of suspended
material, the growth of micro-organisms, or the
chemical incompatability of the recharge water with
the aquifer environment. As it poses a major
problem in recharge operations, the nature of the
problem and possible alleviation of its effects have
been the subjects of previous investigations (Ripley
and Saleem (1973) and Goss et al. (1973)). Clogging
due specifically to suspended sediments, normally
encountered when using flocdwater for recharge,
lends itself to simple mathematical formulation, and
will be considered in this paper.

Analytical studies of the development of groundwater
mounds in unconfined aquifers have been carried out
by Dagan (1967), Hunt (1970), and Amar (1975a), in
most cases involving some assumptions and simplifi-
cations. Numerical solutions have been proposed by
Todsen (1971), Amar (1975a, 1975b). A comprehensive
literature survey in both areas is given by Amar
(1973)::

The work described in this paper couples the model
of clogging due to suspended solids with the one-
dimensional model of an infinitely long strip re-
charge basin in a finite unconfined aquifer. The
methods used for selving this problem include both
linear and non-linear Dupuit-Forchheimer theory.

The results in the non-clogging case are compared
with the experimental data of Brock and Amar (1974).

2 NOTATION

Initial water table height
B/L

Elevation of water table above impervious
stratum = s + a

Aquifer width, B'=

K Hydraulic conductivity
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initial infiltration rate are large. Investigation
should operate in each recharge cycle. The results
average rise in groundwater level is produced.

L Basin width

B Infiltration rate

P, Initial Infiltration rate, p'= POLZ/Kaz

s Elevation above initial water table, s" =s/ap'’

§"  Average of s'" over the aquifer width during ‘
the recharge cycle

t Time, t' = tKa/OL?

tr Restoration time

tu Time at which recharge stops

x Horizontal abscissa, x'= x/L
All symbols with (') or (") are dimensionless

a Clogging coefficient

B avn

8 Clogging parameter = RO/¢Ka

n Fraction of clogging substance retained on
soil surface

5] Porosity

A Concentration of clogging substance in the
water

¢ Dummy variable = (mw/2B')?

3 THEORETICAL DEVELOPMENT
The assumptions are:

(i) The flow conforms with the Dupuit-Forchheimer
approximation; and

(ii) The clogging substances produce a time-variant

infiltration rate but do not alter the

hydraulic properties (hydraulic conductivity

and porosity) of the aquifer.

Berend (1970) derived the following equation to
describe reduction of infiltration rate due to
clogging based on observation and an assumption
that clogging occurs through suspended solids in
the water

(1)

According to Dupuit-Forchheimer Theory the physical
problem, schematically defined in Figure 1, is



governed by the non-linear parabolic partial
differential equation (Brock and Amar, 1974)

LS - el @
which is subjected to the following initial and
boundary conditions:

Bx, &) == B, e_Bt g Kok L (3)

P(x,t) = 0 s XL (4)

H(x,0) = a (5)

H(B,t) = H(-B,t) = a (6)

%;lx=o= 0 (7

Linear Dupuit-Forechheimer model - (2) has no general
analytical solution, but by writing H = s + a, and
assuming that s/a << 1, it can be rewritten as

3s Ka 3%s P(x,t)
3t e %z t T8 (8)
which has the following non-dimensionalised solution:
" 1 T e ® 4 ,2'[1"‘1 2n-1 1
s"(x',t") = nil (2n—l)ﬁ¢Sin( ZB,ﬂ)cos(EﬁTﬂﬂx )4
oS0t' _ _=(2n-1)2%¢t!
(D2 -3 ®)

obtained by eigenfunction expansion.

At time t', when the recharge operation is stopped
the solution for the decay of the groundwater mound
from this point is obtained by separation of
variables and given by

Y T LR R

n=1
(10)
where s"n is the n-th term of (9).
Nown-linear Dupuit-Forchheimer model - Another solu-

tion to (2) is obtained by a numerical technique in
which (2) is rewritten in dimensionless form as

n " o [
e s+ e an
where' G = =1,.4 xT&€ 1

= ¢ X1

for all x' when recharge opera-
tion ceases.

The solution of the above non-linear parabolic part-
ial differential equation in the case § = 0 is given
by Amar (1973, 1975a) using explicit and 3-level
implicit finite-difference schemes. For the general
equation, details can be obtained from Mitchell
(1969). 1In this paper the numerical solutions are
derived from the 3-level implicit scheme shown by
Douglas (1959) to be extremely stable with respect
to round-off error.

Optimal Operation Period under Clogging Conditions-
Under usual economic and operational conditions,
where clogging is inevitable, a period of flooding
of the basin t'y, must be followed by a period of
t'y, for restoring infiltration to the initial rate
during the interruption of recharge. The value of
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t', is generally independent of the flooding period
and is generally known. Based on the concept of
maximising the total amount of water percolating
into the soil from the recharge basin, Berend (1970)
derived the following implicit relationship for the
optimal t',

e—6¢t'u

/080ty + t'y) + 1] 12)

Ground surface i
B oy a7 A

Recharge basin
SZ'/ 3swmm

Clogged area —"i

Impermeable

Figure 1 A groundwater mound in a finite domain
beneath a strip recharge basin
4 RESULTS AND DISCUSSION

Typical solution curves for various 6's at x' = 0
are plotted in Figure 2. When § is non-zero the
rise of the groundwater mound reaches its peak at
different times depending on the magnitude of 4.

The growth and decay of a groundwater mound is
depicted in Figures 3 and 4 which typify the rise
and fall at x' = 0 and along the aquifer body
respectively, From Figure 4 one can see that the
interruption of recharge causes the mound to be
spread over the whole aquifer width.

Results from the non-linear Dupuit-Forchheimer model
have been compared. with those from the linear model.

In most cases, they agree quite well when t' is
small, when the assumption s/a << 1 is valid and the
non-linearity is not apparent.

An examination of Figures 5 and 6 reveals that the
discrepancy is greater under the basin than at a
distance from the basin, and progressively increases
with increasing t'. However, the degree of corres-—
pondence improves as § increases.

As indicated by Amar (1975a) for the non-clogging
case, the solution curves are also influenced by
p' - the smaller the magnitude of p', the smaller
the deviation of non-linear D-F solution curve from
the linear D-F solution curve. The results shown
in Figures 5 and 7 suggest that this is also true

in the clogging case.

Brock and Amar's (1974) experimental curves in the
non-clogging case are reproduced in Figures 5 to 7,
from which the improvement in the correspondence at
low p' is noted.

Comparison is also made in the case of rise and
decay occurring due to the interruption of recharge
in Figures 3 and 4. The development and decay at
the mid-point is shown in Figure 3, and lateral pro-
files in Figure 4. 1In general non-linear D-F theory
predicts a flatter groundwater mound than that fore-
cast by the linear D-F theory.
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Figure 2 Typical solution curves from linear
Dupuit-Forchheimer theory at x' = 0
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Figure 3  Growth of a groundwater mound due to
recharge and decay due to interruption
of recharge at x' =0
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Figure 4 Growth of a groundwater mound due to
recharge and decay due to interruption
of recharge along the aquifer width
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Figure 5 Comparison between linear and non-linear

models at x' = 0.1 (p' = 0.0488)

See Fig.5 for other details.

6 Emcka 3 O—0—0—0-—0—C &0
i ~$-005
L]
S
2 §-05
0 - . = : :
200 "y .00 600

Figure 6 Comparison between linear and non-linear
models at x' = 10.2 (p' =0.0488)
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Figure 7 Comparison between linear and non-linear

models at x' = 0.1 (p' = 0.0188)



The response of groundwater under the optimal re-
charge conditions indicated by (12) was investigated
using the numerical solution (non-linear D-F theory)
which can conveniently simulate periodical recharge
operations.

The optimal t', is determined by plotting §",
average of s" in both time and space during the
recharge cycle, against t'y as shown in Figure 8.
It can be seen that in the first cycle optimal t',
given by (12) is somewhat earlier than the actual
t', at which maximum 8" occurs, whereas in the
second cycle (12) is a very good approximation.
After the second cycle 8" remain more or less con-
stant because the growth and decay has become peri-
odical. This suggests that (12) can be conveniently
used to determine the optimal t'y.
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Figure 8 Relationship between §" and t', at first

and second recharge cycles
5 CONCLUSIONS

Sclutions are obtained for recharge with clogging
from an infinitely long strip basin to a finite
aquifer and for the decay of a groundwater mound in
such a domain. Both linear and non-linear Dupuit-
Forchheimer theories are employed, the former giv-
ing an anmalytical solution and the latter a numeri-
cal solution. Comparison between these two
solutions indicates that an obvious discrepancy
occurs at large t' and p'. However when p' is
small and/or § is large, the linear model does not
exhibit any serious deviation from the non-linear
model.

An investigation of the optimal period over which
the basin should operate under the clogging con-
dition, indicates that when the movement of the
groundwater mound in each recharge cycle becomes

periodic, the expression of the optimal t',
employed leads to a maximum average of s'".
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