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SUMMARY An analytical solution to the magnetohydrodynamic equations of steady plane flow of an ideal gas
with infinite electrical conductivity is found and discussed, assuming that (i) the physical quantities
appearing in the equations are functions of the distance from the origin (of the physical space) alone,

and (ii) the flow velocity is parallel to the magnetic field. The discussion, preceded by some additional
derivations, is in particular concerned with possible types of the flow and its subdivisions into different
regions and/or regimes. Most of the conclusions reached are related to analytical results involving three
characteristic velocities, as well as to a certain parameter which is a product of some non-negative
constant and the stagnation density. For all types of the flow, there is a vacuum around the origin.

NOTATION (ii) the fluid mechanics equations

For any vector, a say, a = |a|.
ey 2| div(py) = 0, (2)
¢y, Cp, C3, C5 — arbitrary constants, c; # 0,

cy > 0; c, = cl/cz;
M - local Mach number; (v.grad)y = -

(curl H) x H
AL, — (3)
P 4mp
r - distance from the origin of the physical space;

and (iii) the conservation of entropy equation = the

R

- rvmaxp*/|czl, adiabatic condition.
- maximum velocity of the flow;
max In this paper, we restrict our attention to the case
e v/v ; when all physical quantities involved are functions
max of a single variable r which represents the distance

S e velocity corresponding to H (see also from the origin of the physical space. Furthermore,
a it is convenient to assume in the foregoing con-

(25,1i1)) ; siderations that the velocity and magnetic field
S U le% L' Shirasteristin velnsilvs vectors are parallel. (That this assumption does
b a . not reduce the generality follows from the use of a
v - acoustic velocity (see also (25,1i)); particular coordinate system (Landau and Lifshitz,
s = 1960 p 230) and some conclusions for plane flows of
e (CSD*/CZ)Z; g = (c&/aw)p*; a gas with infinite electrical conductivity, due to

Kogan (1959), §1.)
Y - isentropic constant;
Taking into account these assumptions, and intro-
v . . - ducing the plane polar coordinates (r,8), we reduce
P = p/p,i Pyr Pyr P~ see (29), (34)-(35), and the system (1)-(3) plus the adiabatic condition to
the following form:

D= stagnation density (see also (14));

(27), respectively;

d
L
dr rH = Cy» H Vi = HBV = 0; (4)
the subscripts r and 0 refer respectively to radial * = o
and transverse components of a quantity.
The remaining notation is either obvious or of les- pTV = .C,, (5)
ser importance. s
i THE PROBLEM AND THE GOVERNING EQUATIONS
vg . He/r
The steady motion of an ideal gas with infinite L (xrH ) ', (6)
electrical conductivity in the presence of a mag- 2 rx - p 4 8
netic field, can be described under certain con-
ditions (see Landau and Lifshitz (1960)) by a
system of equations consisting of: v v H /r
=3 Wk (xH) '; (n
() the field equations r r P
divH=0 curl (H x v) = 0; (1)
R ® S p/oY = ¢y (8)
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d
] N ey
where stands for ar’ Cyr Gy, Cy are constants,
<, #0, cy > 0. (For the validity of (8), see
Kogan (1959).)
2 BASTIC ANALYTICAL RESULTS
2.1 General results

From (4) and (5), we have

H = chpvr, H =c¢

il
% 6 it 4 cz' =)

Therefore
(10)

H = |cq|pv,

and subsequently the ratio of magnetic and kinetic
energy densities, i.e. (HZ/Sﬂ)/(pvz/z), satisfies
the relation

(52/8m) / (pv2/2) = (cZ/am)p. (11)
Using (9), we can replace (7) by
2
[rve[l B p)] =0,
thus implying
e
rve[l g p) = cg, cg = const. (12)

It has been shown by Kogan (1959) that the

Bernoulli equation of classical gasdynamics remains
valid for the gas flow under consideration, and so,
introducing the maximum velocity of the. flow, Vmax'

(Kogan, 1959) and using (8), one may write

W =t o SHEY -

¥=1
max y - 1 & K

(13)

Now, let p, be the stagnation density, which in
view of (13) is given by

(14)

=
_ [ 2yc 1~y
O (= l)v?na !

and let 5 and ; denote the dimensionless quantities
defined by

il:p-Splpy. and - ii).v = v/vmax. (15)
Then we may rewrite (13) as
- -1
2.21-5"". (16)

Remark. Since Vv is within the interval [0,1], so
is p - by (16).

Obviously
(17)

517

where

i 7 ii v, = 8
i) v vr/vmax and ii) Vq ve/vmax (18)

Also it is easy to see from (5), (18,i) and (15,i)

that
32 = (p7) 2 (19)
hy
where
¥ = rvmaxp*/]cz|, (20)
while from (12), (18,ii), (15,i) and (20),
w9 o na=2
vy = al(1 - Bp) E] (21)
where
P,y 2 2
5% % (=
i) o [ % ] and ii) B = i P (22)

Substitution of Gi and Gé, as given by (19) and

(21), into (17) yields

=2 et d
=2 _ ap” + (1 — Bp)
> ¥252(1 - gp)2 ' 23

and moreover, on the basis of (16) and (23), we
obtain

af? + (1 - Bp)?

521 - gp 21 - 77 h

2= . (24)

Note that the mapping ¥+ § is not a one-to-one

correspondence, i.e. the function § = (%) is
multivalued.
2.2 Results involving characteristic velocities

It will be useful for the following to find the

values of § for which (i) v = v = the acoustic
velocity, or (ii) v = Va = the Alfvén velocity

corresponding to H.

By definition,

i) v, = (dp/dp)lﬁ and ii) Va = (4wp)—%H. (25)
Using (8), (15,i) and (14), we have from (25,i)
g ook Gp ol (26)
s 2 max

and substitution of ¥2 = ¥2 = v2/v2 into (16),
s s’ ‘max

plus some evident observation, imply



_._.2__]""-1_ (27)

V=V iff § = Py = [Y T 1

Using (10), (15,i) and (22,ii), we obtain from
(25,ii)

v2 = Bpv?, (28)
a

and therefore
HEE f=p. =B (29)

Remark. In view of Remark of Section 2.1, (29) is
feasible only if B = 1.

As Kogan (1959) has pointed out, in addition to va

and v, there is the third important characteristic

velocity
- 2k
v, = va(l -M ) 7 (30)
where M = v/vS is the local Mach number. On the
basis of (16) and (15,ii)
eyl
M= L pY_l . (31)
= ~ p5

Thus, using (28) and (31), we may write instead of
(30) r

=1 ot
gl m p;
vﬁ = Bg v, (32)
1-p""
Ps
Clearly from (32),
vy is real iff § = ﬁs. (33)
Also from (32),
¥ = 1ff § = 6b' (34)
where 5b is determined by
y-1 _y-1
By Py
BB, === 3. (35)
15257

In view of (33) and Remark of Section 2.1, 5b is
within the interval [55,1]. Therefore, since the
right-hand side of (35), considered as a function

of ﬁb, is strictly increasing, we conclude from
(34) and (35) that

v can be equal to v, iff B € [1,«), (36)

b

and that

the mappinag B b 5b' given by (35) and (37)

such that [1,®) - (bs,l], is bijective.

3 DISCUSSION AND CONCLUSIONS

Bs is easily seen from (24), ¥ +~ = if and only if
(1) g 0 or (4i1): B+ luoxr: (iidi)-f = B'l, that is,
in view of (16), if and only if (i) ¥ =+ 1 or (ii)

¥+ 0or (iii) v + 1 - Bl—Y. By Remark of Section

2.1, p is within [0,1] and therefore, taking into
account that o =2 0 by (22,i), we also conclude from
(24) that inf ¥= % . > 0. (It may be mentiocned
alB!ﬁ Ln
here that, in view of (12), o = 0 corresponds to
the cases when the flow velocity is purely radial
or when the magnetic and kinetic energy densities
are equal; see (11).) Thus for any choice of (per-
missible) '« and B there is a vacuum in the interior
of a disc of radius r = [cz[i . /lp,v__ ) about the
min max

origin. The conclusion in particular removes a
need to consider the flow in a neighbourhood of the
"formal" singularity at r = O.

These general observations and conclusions can be
supplemented by the following ones:

(a) v. < v_or v_ > v_ depending on whether
a s a s

3-1 > 65 or 8_1 < 55 (see (27), (29), and (16);

for completeness also note Remark of Section
2.2);

(b) vb, assumed real, is never greater than vs
(see (16) and (33));

(c) sup H is attained when v = Vi (to show this,

find the stationary pointsof p2v? where v2 is

given by (13), and take into account (10) and

(27)); this observation is not restricted only
to the case considered in the present paper.

The abovementioned types (i) and (ii) of the flow
are possible for the whole range of B, while the
type (iii) is only possible if B > 1 and in such a
case (i.e., for B > 1), in accordance with (29),

p = B_l when v = va. For (i) and (ii), in view of

(10) , lim H = 0. Moreover, for (i), the ratio of
hiagatd
the magnetic and kinetic energy densities also

tends to zexro if r + = (see (11)).

If B < 1, then by (36) and Remark of Section 2.2
there are no points in the flow where v = Va or

v =¥ (If B =2 1: see (34) and (37) for the case
v = v, ; of course, in view of (29), a statement

b
similar to (37) is true in the case v = va.) As in
classical gasdynamics, the subsonic region (i.e.
where § > ﬁs, by (31)) is elliptic, while the sup-

ersonic region (i.e. where § < s by (31)) is

hyperbolic. (We use the terminology as in Kogan
(1959) ; note the omission (by the translator) of
the word "elliptic" on p 94, 13th line from the
bottom. )

Further discussion and conclusions, based in part-
icular on numerical computations and graphical il-
lustrations of the analytical results cbtained in
this paper, will be presented elsewhere.
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