6th Australasian Hydraulics and
Fluid Mechanics Conference
Adelaide, Australia, 5-9 December 1977

The Application of a Finite Element Method to
Compressible, Inviscid Flow

C.A.J. FLETCHER
Department of Mechanical Engineering, University of Sydney

SUMMARY Alternative formulations for external, inviscid, compressible flows are compared.
Galerkin formulation based on the conservation form of the equations is described.

A novel
The use of reduced

integration to evaluate certain key integrals in a related model problem produces a tenfold improvement in

computational efficiency.

The source of this improvement indicates a new finite element formulation.

The use of Newton's method to solve the non-linear, governing algebraic equations associated with the

Galerkin formulation is found to be unsatisfactory.

A least-squares formulation based on the conservation

form of the governing equations does not require the use of Newton's method and produces satisfactory

results for the flow about typical aerofoils.
computational results.

i VELOCITY POTENTIAL vs PRIMITIVE VARIABLES

In the present paper finite element formulations
suitable for external, inviscid, compressible

flows will be considered. The present work is a
stepping-stone towards the treatment of inviscid
transonic flow. Most previous attempts at solving
subcritical flow using a finite element formulation,
e.g. Labrujere (1974); Periaux (1975), have used a
velocity potential, ¢, and the local speed of
sound, a, as dependent variables. The governing
equations in two dimensions are then
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a® + 0.5 (y-1) (r,t:ic + cﬁ;) = af), (2)

¥ is the specific heat ratio and a_ is the stagna-
tion value of the sound speed. At first sight
this approach appears attractive because only one
unknown is required at each node in a finite
element grid. (2) can be treated as a local alga-
braic relation which adjusts the value of a at
each step of the iteration. Also the form of (1)
lends itself directly to iterative solution of the
successive over-relaxation (SOR) type with the
advantage of guaranteed convergence from any
starting values.

However a solution procedure utilizing (1) and (2)
has certain disadvantages. The final solution is
in terms of the velocity potential whereas the
desired quantity is the pressure at the external
surface of the body. Thus the final solution
must be differentiated numerically to obtain useful
information. The direct SOR iterative procedure
becomes more and more inefficient as local sonic
conditions are approached. Thus special iterative
techniques must be introduced if the formulation

is to handle transonic flow. Because (1) is
highly nonlinear the application of a finite
element formulation produces a large number of
cross-terms that must be manipulated at each step
of the iterative process. This large overhead
makes a substantial contribution to the overall
computation time.

The present treatment of the inviscid, compressible
flow problem operates in terms of the primitive

Comparisons are made with experimental and other

variables and expresses the governing equations in

conservation form. Thus
CONENCONER 3
(e + p)y + (puv) = 0 (4)
(buv), + (v + ), = 0 (5)
p = ko' (6)

It is believed that this is the first time a primi-
tive variable finite element formulation has been
applied to the full equations of motion governing
compressible, inviscid flow. Examination of (3),
(4) and (5) indicates that they have the same form
and are linear in terms of the various groups of
variables. This situation may be contrasted with
{1y 5 Equations (3) to (5) are also applicable to
local areas of supersonic flow. The final
solution for the pressure is obtained directly.
Possible disadvantages of this formulation are the
requirement of three unknowns per node and the need
for special iterative techniques depending on the
particular finite element formulation considered.

2 A GALERKIN FINITE ELEMENT FORMULATION

As with any finite element formulation analytic
representations for the dependent variables are

introduced. Here these are
pu (ou) 5
pY (PV)j
# = Z N. : e
B il i AR ikl
puv Uﬁﬁ)j
pv? (ev?) .
J
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where Nj is a quadratic, serendipity rectangular

shape function appropriate to the jth node and —
indicates the nodal values of the different
variables. A unique feature of the present form-
ulation is that the analytic representation is
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applied to groups of variables, e.g. pu’, rather
than single variables, e.g. u. An immediate
advantage is that no cross-terms requiring
expensive double summations occur; thus compu-
tational efficiency is enhanced. An apparent
disadvantage, that will be dealt with later, is
that there are more unknowns than equations!

Substitution of the representations (7) into the
governing equations, (3) to (5), produces the
following residuals,

aN. N
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Application of the Galerkin method (Fletcher,
1977b) i.e.

PN e deay S0 ke Tt = Tay, (1)
ik

produces algebraic relationships of the following
form

;aij . (pu)j + ?bij (pv]j = 0
j j
? aij é;} + D). + ; b, . UEEQJj =0 % i=l,n
j j
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where
N.
aj; = JIN, Hl . dx.dy 13
and aN
by = SIN, . 371 . dx.dy . (14)

Equations (12) are attractive because of their
simple form and because the same algebraic co-
efficients occur throughout. With the introduc-
tion of an isoparametric formulation the evaluation
of (13) and (14) can be carried out, once and for
all, on a dummy element (Fletcher, 1976). This is
desirable so that the computation time may be
reduced as much as possible.

L] 5 o
J 1]

3 CALCULATION OF a,
The integrations in (13) and (14) are carried out
numerically. For rectangular elements Gauss
quadrature formulae are appropriate. At first
sight it would appear desirable that the order of
the Gauss quadrature formula should be sufficiently
high that the integrations in (13) and (14) are
carried out exactly. However there is consider-
able empirical evidence from both structural
applications (Zienkiewicz, 1976) and fluid flow
applications (Fletcher, 1977a) that more accurate
final results may be obtained if the order of
numerical integration is reduced.

The evaluation of aij and bij’ in (13) and (14),

would be exact if a 3x3 Gauss quadrature formula

were used. For a model problem of inviscid, in-
compressible flow about a two-dimensional cylinder
the same expressions for L and bij arise

although the governing equations are different.

For this problem the use of a reduced integration
(i.e. a 2x2 Gauss quadrature formula) produces a
dramatic improvement. Figure 1 shows the tang-
ential velocity at the surface of a circular
cylinder obtained with exactly the same grid but
with differing orders of numerical integration. .
RMS differences between the finite element solutions
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Figure 1 - Comparison of reduced integration and
exact integration for incompressible

flow about a circular cylinder

and the exact solution at the body surface have been
computed and indicate the solution using reduced
integration is approximately three times as
accurate. To achieve the same accuracy using exact

numerical integration required a ten-fold increase

in computation time.

It can be shown (Fletcher, 1977c) that the use of a
2x2 Gauss quadrature formula applied to the
integrals in (13) and (14) is equivalent to replac-
ing the term aNj/ax by its least-squares fit over

each element, i.e.

N, aNj
IS5 NEE et dx.dy = [/N; 'Ef; dx.dy.  (15)

It follows that this is equivalent to replacing the
residual in (11) by its least-squares fit over each
element, or

N, Rl(ki T o | e TR ok e gl e 6 1y
The equivalence is only valid for rectangular ele-
ments. Consequently the use of reduced integration
with triangular elements, which has been proposed by
Zienkiewicz (1976), fails. However the direct
application of (16), which is proposed as a new
Method of Weighted Residuals by Fletcher (1977c), to
triangular elements is successful as indicated by
the results shown in Figure 2.

Thus certain alternative techniques for evaluating
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(13) and (14) imply different formulations than (11)
and these alternative techniques often produce

superior final solutions.
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Figure 2 Comparison of reduced integration and
least-squares residual fit for in-
compressible flow about a circular
cylinder

4 SOLUTION OF THE NONLINEAR EQUATIONS

The algebraic relations, equations (12), can be
written as functions of p., (Pu). and (PV). in the
following form J J J

; a5 Qﬁﬁ)j + ; bij (pv)j = 0
j j
puw)? (Pa). . (AV) .
2 Bty =Y j e
aij 'Ej + k.pj + ? bij ! T— 0
). . (AV) . )2
25 J—EJ“'Ebi —ﬁ“J"k‘ﬁﬂr‘:OJ
3 i s ] 4
i=1,n (17)

It is apparent that equations (17) define enough
independent relationships to solve for the unknowns

pj, ﬁﬁﬁ)j and (ﬁ?)j. A solution to (17) has been

sought using a generalised Newton's method.

If all the unknown nodal values are gathered together
in a vector §, then at the (v+1)th step of an
iterative process, a generalised Newton's method may
be written

—v+1 ot - =
=g -\ . J(;) . R@"H (18)
In (18) the jacobian, J = 9R/0q where R is a vector
of all the equation residuals formed from the left
hand side of (17). A is a scalar; setting A =1

gives the conventional Newton's method.

A major problem with Newton's method is that J must
be computed and inverted at each step of the itera-
tion. The inversion of J requires large quantities
of main storage and requires a large amount of comp-
utation time. Sparse matrix techniques have been
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introduced (Fletcher, 1976) to economise on both
main storage and on computation time. However
other ways of making Newton's method more economical
have also been utilized. Firstly J and J~' have
been held constant for a number of steps. Secondly

. : —v+1 .
trial solutions, 9 . » have been computed with

different values of hm‘

ﬁ;+1, is that which minimises Sm given by

The preferred solution,

z 2
s =X °R
moogg i

These techniques have been effective and Newton's
method has converged rapidly when close to the true
solution. A typical set of results for compress-
ible flow about a circular cylinder is shown in
Figure 3.

(19)

08

MACH NUMBER AT THE SURFACE MT

0 10 20 30 40 50 80 70 80 %0
ANGULAR LOCATION (DEGREES)

Figure 3 Compressible flow about a circular

cylinder

Unfortunately as the grid is refired, i.e. the
number of unknowns, n, is increased, the radius of
convergence shrinks (Rheinboldt, 1974). This
feature of Newton's method has been found to negate,
to a considerable degree, the advantage of quadratic
convergence when close to the true solution. For
the flow about a circular cylinder it was not found
possible to obtain convergence of Newton's method
for Mach numbers above 0.32.

Successive over-relaxation (SOR) iterative tech-
niques converge more slowly than Newton's method but
are guaranteed to converge from any starting values.
In an effort to utilize SOR iterative techniques the
Galerkin formulation has been superseded by a least-
squares formulation. This is described in the next
section.

5 LEAST-SQUARES FORMULATION

The starting point for this formulation are the
expressions for the residuals, equations (8) to (10).
The least-squares formulation requires that

(2)2

Ffiay RV a5 8 9020005 1Yy gy ayie

minimum, (19)

where @;, @ and @3 are scalars that may be used to
adjust the significance of the various equations.

Differentiating (19) with respect to each of the
unknown nodal values in turn produces the result



(1) (2) (2)
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where q; = {oaﬁ)i , @M, ﬁi}. Substitution of

equations (8) to (10) into (20), and evaluation of
the integrals, produces the following algebraic
equations.

(m) (m)  — m) = (m) =2

Sro SRR : el 2y (MR A Al S T e

S & Ao T L Dol B
m) = (m) =2 m 5 _

+ xij . (puv)j + yij . (v )j + zij - Py =0

b I LR T B (21)

where rg?), etc., are algebraic functions of

(aij’ blj, cij.l dlj, ui.l Vi, pl). aij: les clj

dij are algebraic coefficients which result from
the following integrations over each element.
dN. aN. R
aij == il al 5 EJ . dx dy
gy R
iy = T oy, . R
BN, ON, F g e
cij = [f a—xl aj . dx dy
. yp o e
i = dy " ax - x dy J
Equations (22) may be compared with (13) and (14)
that arise from the Galerkin formulation. However

when used with an isoparametric formulation, (22)
are considerably more complicated to evaluate than
(13) and (14).

The iterative solution of (21) for Qﬁﬁ)j, (ﬁﬁ}j and
E& has been obtained from repeated applications of
the following formula

m 7
e RCRY NG

v
= N 2L
. 93 l(qo)

i 5 (23)

In contrast to Newton's method Bsgm)/aqi is a scalar

and trivial to invert, thus no excessive demand is
made on storage or computation time. A is a
scalar and may be used to increase the rate of
convergence.

The application of the least-squares formulation to
compressible, inviscid flow about two representa-
tive aerofoils is indicated by Figures 4 and 5.

The pressure distributions shown in Figure 4 have
been obtained from the flow about a NACA-0012 aero-
foil at zero angle of attack and a freestream Mach
number of 0.40. For comparison experimental
results (Amick, 1950) and finite difference compu-
tations (Emmons, 1948) are included.

The pressure distributions shown in Figure 5 have
been obtained from the flow about a 6% circular-arc
aerofoil at zero angle of attack and a freestream
Mach number of 0.71. Experimental results
(Knechtel, 1959) are shown for comparison.

The agreement between the finite element solutions

and the experimental results is slightly mislead-
ing. Since the computational results do not allow
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Figure 4 Compressible, inviscid flow about a
NACA-0012 aerofoil
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for the displacement thickness the computational
results would be expected to produce a pressure
distribution that was more negative than that
produced by the experiment with a smooth body
surface. The failure of the computational results,
shown in Figures 4 and 5, to produce a sufficiently
negative pressure distribution is believed to be
due mainly to applying the free-stream boundary
conditions not sufficiently far from the body.
Although the results presented are for purely sub-
critical flows, finite element solutions exhibiting
local supersonic flow, but without internal shocks,
have been obtained for other configurations.
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