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SUMMARY Some general 'diffusion' relations are used to derive the formulae for the mass average velocity,
the pressure tensor and, by implication, the 'hydrodynamic' pressure of a gas mixture formed as the result
of the free-molecular free expansion of a spherical gas cloud (initially in equilibrium) being combined

with a corresponding 'dissipation' motion of a surrounding gas medium (initially separated from the cloud

by a spherical impermeable membrane, and also in equilibrium) .

A discussion of some typical or specific

features of the behaviour of the mixture's density, mass average velocity and pressure is presented, and

illustrated by some selected diagrams.
il INTRODUCTION

This paper is a continuation of and a complement to
our earlier paper (East and Glikson, 1974). 1In
that paper, we considered two special subcases of a
quite general problem of free-molecular expansion.
The problem and the method of its solution can be
stated briefly as follows:

An impermeable membrane (or a set of membranes) of
fixed shape separates two ideal (in general, dis-
tinct) rarefied gases, each of them in equilibrium,
i.e., the molecular velocity distribution function
of each gas can be taken as absolute Maxwellian.
This configuration occupies the whole of the
physical space. At a certain moment of time, t = 0
say, the membrane is instantaneously removed with-
out disturbing the gases. The resulting flow is
assumed to be free-molecular, and so the problem
can be studied adequately on the basis of two
Boltzmann equations - one for each gas constituent
- with zero collision integrals (more precisely, on
the basis of some molecular velocity distribution
functions satisfying these 'reduced' Boltzmann
equations). All macroscopic gquantities for a part-
icular gas constituent are of course defined as
corresponding moments of the velocity distribution
function of this constituent. Subsequent expres-
sions for mean gquantities of the resulting mixture
can be given in terms of these moments and/or some
initial quantities. (For a purely mathematical
statement of the problem and the method of its
solution, as well as for some additional comments
and a list of related references, see East and
Glikson (1974).)

The special cases of boundaries considered in East
and Glikson (1974) were (i) two straight infinite
parallel membranes, and (ii) a spherical membrane.
The corresponding problems were termed respectively
the "infinite layer" problem and the "spherical
cloud"problem. (For the latter prcblem to be feas-—
ible, the Maxwellian distribution functions invol-
ved have to be centred about zero mean velocities.)
While the solution of the first problem was con-
sidered and discussed in that paper to a reasonably
full extent, the solution of the second one con-
tained neither expressions for the components of
the pressure tensor, nor were diagrams or detailed
observations for this problem included. Also a
misinterpretation of a formulae quoted there from
Hirshfelder et al (1954) led to an evaluation of
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the average of all possible molecular speeds in-
stead of the mass average (radial) velocity of the
flow. 1In the present paper, we complete these
points which are not contained in our earlier work
on the spherical cloud problem.

The method used below for the derivation of mean
gas quantities differs from that of East and
Glikson (1974) , and relies essentially on the use
of certain 'diffusion' relations which are, in some
respects, generalizations of those of Narasimha
(1962) . These generalized relations are presented
in Section 2.

Details of calculations, leading to the results of
Sections 2 and 3, will be given elsewhere.

NOTATION

" 3 .th ;
The subscript i € {1,2} refers to the i constit-
uent of the gas mixture. For the gas inside the

membrane(s), i = 1; for the outer gas, 1 = 2. (An
omission of the subsecript i refers to the gas mix-
ture as a whole.)

The subscripts j,k € {1,2,3} refer to corresponding
components (elements and/or rows) of a vector or
tensor.

The superscript U refers to the value of a quantity
at the initial time t = 0.

a - radius of the spherical membrane;

(2kT/m)li - most probable random speed of a gas;

h =

k - Boltzmann's constant;

m - mass of a particle of a gas;

n - number density;

p - hydrodynamic pressure;

P - pressure tensor;

r = xj/a, where x; is the distance from the centre
of the spherical membrane;

t - time;

T - temperature;

u - mean velocity of a single gas;

o - mass average velocity of a gas mixture;

up., ﬁl - radial components of u and g, respectively;

{xj} - a system of (curvilinear) coordinates in the

physical space;



0 ,~0
U 3 ;
DI/DZ
= n0/mo,
Vi i/ 2!
p - mass density;

= th0/a.

T tl 2/a

The remaining notation is defined where it appears.
2 FREE MOLECULE DIFFUSION

2L The Origin of the Method

For a particular subcase of a general free expan-
sion problem, in which one of the gases is 'replac-
ed' by vacuum, Narasimha (1962) has shown that p
satisfies a certain diffusion equation if and only
if the initial velecity distribution function is
isothermal Maxwellian. (As a by-product, this
theorem explains the success of the rather heurist-
ic approach of Molmud (1960).) Furthermore, rel-
ations were found between p, u, T, P and the heat
flow vector of the gas, which provide a useful
method of calculating these guantities after the
value of one of them, say p, has been found by
direct integration.

2.2 Diffusion Relations for Free-Molecular
Mixtures

Provided that the Maxwellian distribution functions
of the general problem of Section 1 are centred
about zero mean velocities, some relations (similar
to those mentioned in Subsection 2.1) can be found
for such a general case, by using the equations of
continuity

aoi

7 + dlv(pigi) =0, (1)

and a generalization of a certain relation from
Narasimha (1962),

A B
piyi 2t(hi) grad pi. (:2)

They are as follows:
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where
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row of [ij]

Il

éj is the jth the Kronecker delta.

(A generalization of the diffusion equation mention-

ed in Subsection 2.1 is obtained by substituting
(2) into (1).)

The abovementioned relations, found by Narasimha

(1962) for the case of a single gas and vacuum, are
obtained from (1) - (5) when i takes only one value;
of course u = u, in such a case. (Note that B, of

(3.24a) of Narasimha's paper should be replaced by
28,.) It has to be pointed out, though, that (1) -
(5) are applicable in any coordinate system {xj} in

the physical space, whereas Narasimha's relations
(especially the cne corresponding to (5)) are bas-
ically applicable in cartesian coordinate systems.
This was found to be important in the present
paper, since in Section 3 below spherical polar co-
ordinates are chosen in preference to a cartesian
system.

Also, it should be stressed that the relations (2)
- (5), as well as the diffusion equation resulting
from (1) and (2), are not in general applicable to
the infinite layer problem (described in the Intro-
duction) , unless the mean velocities of the con-
stituent gases are equal to zero; otherwise ad-
ditional terms have to be introduced into (2) - (5)
and the diffusion equation.

2.2.1 Mixture pressure

The pressure of a component of the considered gas
mixture, at a point x and instant t, is given by
p = nkT (Hirshfelder et al, 1954). Using (4), it
may be readily shown that

B 02y =L 4 2l
p = E{Eﬂi(hi) (L = St div ) + p ul pl (6)

and, as expected, a comparison with (5) yields
p = 3(pyy * Pyy + P33)-

3 COMPLETION OF THE SPHERICAL CLOUD PROBLEM
3.1 Mass Average Velocity

Because of the spherical symmetry of the problem, a
natural choice for coordinates in the physical
space is a spherical polar system {xl, X5 x3}
whose origin is located at the centre of the
spherical membrane of radius a. In the following,
X, represents the distance from the centre of the
membrane.

Expressions for ng, Py and p for the spherical

cloud problem are given in East and Glikson (1974),
and show that all these densities are independent
of X5, X3. (The expression for ni contains a

typographical error, namely, "+" inside the brack-
ets should be replaced by "-".) It follows then
from (3), that u has only one non-zero component,
ﬁl (i.e. the radial one), given by

i
(-1) 19" o

- al 1=

ke E{ﬁ} {(12\)% S 2r)exp‘:-( virr) }

2
_(TZ\J]?_ + 2r)exp[—(1 e r) ]}, (8)
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where the non-dimensional gquantities r, Vir T are
defined as follows:
.= xl/a,

= n0/p0 = g0
vy hi/hz’ T t! 2/a.



Expression (8) represents the average (evaluated at
each (x,t)) of the components in the xl—direction,
of all possible molecular velocities, whereas, in
our previous paper, the result found was the aver-
age of all possible molecular speeds. It may be
verified that for the subcase described in 2.1 and
discussed by Narasimha (1962), our expression (8)
reduces to Narasimha's result in (3.14), provided
his expression is corrected by (i) multiplying the
right-hand side by p,, and (ii) replacing the term
12782 by 12/282. (This second omission was pointed
out to us, independently of our calculations, by
Professor Narasimha.)

352 Pressure Tensor of the Mixture

Since both yi and U have non-zero components only

in the x,-direction, (5) gives the nine components
of P in the spherical polar coordinates as follows:

ij=0 if j #k, (9)

= e 0y2
Pyp = By = 1 kp, (0))2, (10)
1

] 2
Py =1 %(hg)z[oi ~ik g (piuil)} - o3,
1

or, after evaluating the derivative,

Z =2
Py = % %pi(hg)z - puy
(1) *p0 (h0) 2 - 2
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33 Diagrams

We complete Section 3 by presenting a number of
diagrams selected to illustrate graphically some
typical and/or specific features of the evolution
in time and space of the mixture density p (Figures
1-3), mass average velocity u, (Figures 4-6) and
mixture pressure p (Figures 7, 8). In the diagrams,
these mean guantities are scaled with respect to
the corresponding initial quantities of the outer
gas, that is, with respect to pg, hg and

pg = %pg(hg)z. (The importance of the dimension-
less parameters vy and By = p?/pg should be notic-
ed.) Recall that p is basically given by the
formulae of Subsection III(ii) (a) of our earlier
paper (East and Glikson, 1974) with an amendment
mentioned in 3.1 above; u; is given by (8); the
expression for p follows from (7), (10) and (11).

In all figures the numbers assigned to the curves
represent the values of the dimensionless time
variable T.
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Figure 4 Mass average velocity; u; = %, Vv
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Figure 5 Mass average velocity; uy, = 1, vy = 2
1 i T -
L !
!
z |
[ | -
|
o
. | et vl
; |
| | |
{ | ‘
= (] 1 2 T 3 4
Figure & Mass average velocity; u, = %, vy, =2
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Mixture pressure; uy =
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Figure 8 Mixture pressure; u; = 5, My = 2
4 DISCUSSION AND SOME CONCLUSIONS

We restrict here our attention to some observations
and conclusions based essentially on the above dia-
grams, however, some general comments may be found
in Section IV of our earlier paper. It may also be
noted here that, since (1)-(5) are valid under the
general restriction that the gases be initially
isothermal, the stronger restriction of Section 1

(i.e., that the gases are initially in absolute
equilibrium) could be appropriately weakened.

A detailed analytical discussion of the results of
Sections 2 and 3 is postponed to a subseqguent paper,
where, in particular, we draw a parallel to an an-
alysis, carried out by Narasimha (1962), of the pro-
gression of the 'shock' wave front in the problem
briefly described in Subsection 2.1. (Narasimha
concludes that after a certain 'long' period of
time, 1 > 1, the 'shock' wave travels at a speed
equal to the initial isothermal speed of sound in
the gas. A somewhat different situation is expect-
ed, however, for the case u; =1, v; # 1 discussed
below, if a similar analysis were carried out.)

Setting vy = 1 with u; # 1 produces a case similar
to that of 2.1. This has been discussed elsewhere
(Kornowski, 1959), (Molmud, 1960), (Narasimha,
1962) , and graphs similar to Figures 1 and 4 may be
found in the two latter papers. The diagram of the
mixture 'hydrodynamic' pressure, for this case, is
not presented here because of space limitations.

It indicates a continuous smoothing out of the in-
itial pressure difference, in an almost identical
manner to that exhibited in Figure 1.

To gain a better understanding of the case where
simultaneously u; # 1 and v; # 1, it seems reason-
able and useful to also consider the case u; =1
and v; # 1. Figures 2, 5, 7 show a typical ex-
ample of the situation for such a case if v; > 1.

A 'shock' wave is evidently moving (initially) out-
ward from the position of the initial membrane,

r = 1, with a corresponding trough moving toward

r = 0. In our previous paper (East and Glikson,
1974) , it was pointed out that hg represent stat-

istically the deviation from the mean of the in-
itial molecular velocities (for the spherical cloud

problem, gg = 0). Initially, therefore, the gas

with the larger hg value is in a higher state of

thermal excitation, and consequently, having a high-
er pressure (see Figure 7), it diffuses more rapid-
ly in the initial stages. A 'similar' pattern is
exhibited for the case when v; < 1. Then the
'shock' wave moves toward r = 0, while the trough
moves outward from r = 1.

The abovementioned features of the restrictions

vy = 1 and u; = 1 are seen to be combined in the
examples shown in Figures 3, 6 and 8 where no such
restrictions are placed on v; and W;. A complete
discussion of this case, however, will require an
analysis of the 'shock' wave progression.

5 REFERENCES

EAST, R. and GLIKSON, A. (1974). Analysis of some
discontinuous initial-value problems for free-mol-
ecular gas mixtures. Proc. Fifth Australasian
Conf. Hydraulics and Fluid Mech., Christchurch,

pp 530-537.

HIRSHFELDER, J.0., CURTISS, C.F. and BIRD, R.B.
(1954) . Molecular theory of gases and liguids.
New York, Wiley.

KORNOWSKI, E.T. (1959). On some unsteady free mol-
ecular solutions to the Boltzmann equation. Gener-
al Electric Report R59SD463, November.

MOLMUD, P. (1960). Expansion of a rarefied gas
cloud into a vacuum. Phys. Fluids, Vol. 3, pp 362-
366.

(1962) . Collisionless expansion of
J. Fluid Mech. Vol. 12, pp

NARASIMHA, R.
gases into vacuum.
294-308.

320



