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SUMMARY

The two-dimensional incompressible flow of viscous and heat conducting fluid along an infinite

flat plate has been considered. Firstly the suction velocity at the wall is taken constant and the velocity
and the temperature distribution in the boundary layer are expanded as a series of n terms. Secondly the
suction velocity is variable and depends upon certain parameter A. There is a constant magnetic field
perpendicular to the wall. The co-efficients of heat conduction, magnetic susceptibility and viscosity are
constant. The induced field has bee neglected. The flow phenomenon has been characterized by the magnetic
parameter, frequency parameter and variable suction parameter and the role of these parameters om the flow

characteristics has been studied.

1 INTRODUCTION

Lighthill [1] considered the response of skin-fric-
tion in laminar boundary layer of a fixed cylindri-
cal body to unsteady fluctuations of the free
stream velocity. Stuart [2] extended it to the case
of an oscillatory flow past an infinite plane wall
and obtained an exact solution of the Navier-Stokes
equations and also compared some of his results
with Lighthill's, Messiha [3] studied Stuart's [2]
problem by introducing variable suction at the
plate, Puri [4] considered Stuart's [2] problem in
a rotating medium and studied the modification on
the velocity profile, drag and the lateral stress
on the plate.

The phenomenon of natural convection arises in a
fluid when the temperature changes cause density
variation leading to buoyancy forces acting on the
fluid elements. This process of heat transfer has
important technological applications e.g. in the
cooling of nuclear reactors providing heat sinks in
turbine blades and high speed re-entry vehicles.
When a forced flow in a heat exchanger ceases, a
free convention flow takes place when either of the
plates on the fluid are at an elevated temperature.
In nuclear reactor a significant reduction in heat
transfer can be achieved by applying a magnetic
field.

The purpose of the present paper is to investigate
the influence in the unsteady free convection lami-
nar flow past an infinite plate in the presence of
uniform magnetic field. Two cases are considered.
In the first case the suction velocity at the wall
is constant. In the second case the suction velo-
city vg is time-dependant. The Fourier expansion
of vg is assumed and the series expansion solution
of the system analogous to the previous case but
now with one coefficient dependant on time is
sought. Also in this case the solution now approxi-
mated with the arbitrary order of accuracy for the
small parameter € is found. The gravitational
forces perpendicular to the wall are taken into
account. The fluid is electrically conducting and
the magnetic field will produce an interaction with
the fluid that crosses it. The velocity will not
change in the direction parallel to the motion and
will be zero in the direction normal to the plane of
the magnetic field and plate motion. In the analy-
sis of the present paper the viscous and Joulean
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dissipation have been neglected. The expressions
for temperature distribution in the boundary layer
and skin-friction are obtained. The discussion of
the Tesults obtained in particular the dependence
of the solution on the parameter A is performed
making it more accessible to technologists and
experimentalists.

2 BASIC EQUATIONS

let the x-axis be along the plate, y-axis perpendi-
cular to the plate. Let Hp be the intensity of the
magnetic field acting perpendicular to the plate.
The equations which describe hydromagnetic free con-
vection flow of a viscous incompressible fluid past
an infinite flat plate are:
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where t — time; u - the velocity component along

the plate; Vg - a non-zero negative constant suc-
tion velocity;_T - the temperature in the boundary
layer; Bg = ucHg - the magnetic inductionj og - the
electric conductivity of the fluld; p - the density;
v - the kinematic viscosity; u. - the magnetic per-
meability of the fluid; B - the coefficilent of
volume expansion; g — the acceleration due to gravi-
ty; k - the thermal diffusivity.

Introducing dimensionless quantities
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where Tw — the mean wall temperature, Gr - the Gras-
hof number, Pr - the Prandtl number and M - the hy-
dromagnetic parameter.

Thus using equation (3) in (1) and (2), we get
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and boundary conditions
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3 SOLUTION OF EQUATIONS

We consider two cases where in case (i), the suction
velocity at the wall is constant and the velocity
and temperature distribution in the boundary layer
are expanded as a series of n terms and in case (ii)
the suction velocity is variable and depends on
certain parameter A such that eA < 1. On putting

A =0, we get the solution for case (i).

Case (i): when suction velocity is constant we
assume
u(y,t) = F () + F, (e + —— + F (et
0 1 n
(n
T(y,t) = T (y) + T, (y)ee™™® 4 oo 4 1 (y)etetet
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and the boundary conditions are
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Substituting equation (8) into (4) we have on
equating the terms independent of celdt to zero and
equating the coefficients of harmonic terms

n 1
TO + PrT0 =0
n A
T, + PrT. = PriwT =0
0 it 1 (10)
e i e
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whose solutions by using the boundary conditions
(9) are
To(y) = exp(- Pry)
L) = exp(- h;Pry)
___________ (11)
T (y) = exp(- th!Y)
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where
= 4inw,1/2 ]
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After the solutions Tg, Ty, — - — are known we may
use these to find Fy, F{ - - - as
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After calculating u and T, the non-dimensional form
of the rate of heat transfer from the wall to the
fluid
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Case (ii): when suction velocity is assumed time-
dependant Vg in (1) is replaced by

n inwt
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from (4), (5) and (16)
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Using (8) into (20) and equating the terms indepen-
dent of time and harmonic terms and solving with
the help of boundary conditions (9) we get,
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After substituting in (7) and (8) and calculating
u and T, the non-dimensional form of the rate of.
heat transfer from the boundary to fluld medium
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The expression for skin-friction

au] _ Gx(Pr-2)

- [_ iwt
oy y=OPr(Pr—l)M

T + e e

= [2.1(c+d+e) -

- Pr(ch1+d)—el] Foaer F oaen + .00 (24)

where

2w

PrzAh = iPr3A2h

1 1

22 2
hj Pr- h Pr'-2 LiPr

AGTA
[Pr(Pr=1)-M] [A2-A=(1w) ]

(25)

When the magnetic field is fixed and w is large,
then we have
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where d and e keep their original values if w is
not too high and thus
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Substituting in (11) we get, the expression for
temperature distribution
2.2 9 3.3
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Pr
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4 CONCLUSIONS

We see that the skin-friction and the rate of heat-
transfer depends upon the fluctuating part of the
suction velocity. The rate of heat-transfer from
the wall to the fluid decreases as the suction
velocity increases. It decreases uniformly for
higher values of w. Both skin-friction and heat-
transfer at the wall decrease with the increase in
the magnetic field for constant suction velocity.
Physically it is also true. This is due to the
fact that magnetic field exerts a retarding in-
fluence on the motion of the fluid which implies a
reduction in the velocity gradient at the wall and

consequently the skin-friction is reduced. Also
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Figure 1 Variation of temperature
distribution with w
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Figure 2 The variation of skin friction with A
for large values of w with fixed M

due to Reynold's analogy reduced skin-friction
implies reduced rate of heat-transfer with increase
in magnetic field.
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