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SUMMARY  Thermodynamic relaxation processes, set up in a fluid by a moving body, are a source of entropy
production which causes a drag force on the body. For a slender two-dimensional body moving with uniform
velocity this drag force is explicitly given as a functional of the velocity potential for the limiting
cases of near-equilibrium and near-frozen flow. The result for near-equilibrium flow is used to calculate
the shape of a profile which, for given area and given lift coefficient, has minimum relaxation drag.

1 DRAG CAUSED BY A RELAXATION PROCESS

-y x curl v=Twvs (1)

Rate processes in a fluid, for example chemical re- o
actions or relaxation of internal molecular degrees Here vy is the velocity, T the absolute temperature,
of freedom etc., are a source of entropy production. and s the specific entropy. As (1) shows, the
|f these relaxation processes are due to changes in downstream flow possesses vorticity which is gene-
the thermodynamic state of the fluid which are cau- rated by the rate processes. The direction of the
sed by a body moving through the fluid, then as a vortex vector is such that the velocity is decrea-
consequence of the entropy production in the fluid sing with increasing entropy. Hence, the downstream
the body experiences a drag force. The relation velocity profile exhibits a wake with diminished
between entropy production and drag is easy to de- velocity (see the figure).
rive for a slender two-dimensional body (profile)
moving with constant velocity ue, through the fluid. The drag force D on the body (per unit length per-
In a body-fixed frame of reference the flow is pendicular to the flow plane) is
steady; the fluid approaches the body with velocity
Ug . The approaching fluid is in a thermodynamic D =‘I? u (ug = u) dy (2)
equilibrium state. We assume subsonic flow through-
out, such that no shock waves appear in the flow The integration has to be performed on a line
field. x = const so far downstream that pressure distur-

bances created by the body have disappeared there.
In the vicinity of the body pressure and density, For a slender profile the disturbance of the paral-
and hence the thermodynamic state of the fluid, lel flow, and hence also the entropy production,
are changed as compared with the upstream equili- remains small, so that |ue - U| ¥ Uxn . Assuming
brium state. Thereby relaxation processes are set slenderness of the profile we linearize the theory
up which generate entropy. Assuming the flow to be with respect to disturbances of the undisturbed
inviscid, these are the only entropy sources in the parallel equilibrium flow. Equation (2) is thereby
flow field. Because the disturbance created by the transformed into:
body decreases with increasing distance from the
body, the entropy production will be higher on D= ¢ uﬁj(um- u) dy (3)
streamlines passing through the immediate vicinity
of the body than on streamlines farther away. The linearized form of Crocco's vorticity theorem
Therefore, an entropy wake emerges downstream, as is
shown in the figure. Far downstream of the body the 3 3
flow is again a parallel flow and the fluid is in U E% = Ten 3% (4)

thermodynamic equilibrium. Consequently, Crocco's
vorticity theorem is applicable (Becker, 1970):
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On integration (4) yields:

U (0= 0) = To (5 = 555) (5)
Combination of (3) and (5) leads to
D= Teo Qoo umJ—(s - 5) dy (6)

NOW, Pes Ueo _[(s - S ) dy is the surplus of entro-
py leaving a large control volume surrounding the
body. Therefore, (6) may be written as

D=Tm§/um=-}? fG‘dx dy (7)

Here, S is the entropy generated per unit time in
the flow field, and & is the entropy generated

per unit time and unit volume of the flow field.
The integration in (7) extends over the whole flow
field. Equation (7) generalizes a result originally
derived by Oswatitsch (1945) to flows with relaxa-
tion. Though here derived for a slender profile,

it is of quite general validity (cf. Romberg 1966,
Becker 1970).

2 ENTROPY PRODUCTION

For evaluating the entropy production & in (7) we
assume that only one rate process has to be taken
account of which necessitates the introduction of
one internal state variable q. (The generalisation
to more than one rate process is rather straighi=
forward, but does not yield additional insight).
A possible form of the canonical equation of state
of the fluid is

h =

hi ' lps s579) (8)

Here, h is the specific enthalpy, p the pressure.

The differentials of the four state variables in
(8) are connected through Gibbs' relation:
1 3h
dh = T ds+—=dp+ — d
5 Pe 39 9 (9)

Since for inviscid flow h = p/§ , with the dot de-
noting the material derivative with respect to
time, (9) immediately yields:

(3]
=

& __1

q (10)

s =

? o
For thermodynamik equilibrium the internal state

variable q is a function g(p, s) of pressure and
entropy, which is implicity given by

al

q

%(p, 8 T ps s e (11)

The rate of change of q is assumed to be determi-
ned by the following rate or relaxation equation:

(12)

Here, T is a relaxation time; in accordance with
the small disturbance assumption T is considered
a constant throughout the flow field. To first
order we have:

g=(3-q/T

2 3

dq

dh;, = &
a—g(p,s,q)= g—g(p,s,qh (9-9) (13)

fand Cide

where the first term on the right
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Case a: Near-equilibrium flow.

vanishes because of (11). By combining (10), (12)
and (13) one derives

(2h

7 oo
q

Q

6% (14)

—qvo
8

— T

ja3]

The index "' indicates that the corresponding
quantity has to be taken at its upstream value in
agreement with the small disturbance linearization.

3 DRAG FOR NEAR-EQUILIBRIUM AND
FOR NEAR-FROZEN FLOW

The entropy production as given by (14) can be re-
lated in a simple way to the velocity field for
two limiting cases:

In that case the
relaxation time T is so small compared with the
characteristic flow time 1/ue (with 1 the profile

length) that everywhere q =G, q = q. Therefore,
(12) yields:

= 2 .2
§-g9)/Tc=~=cq (15)
Inserting (15) into (14) one obtains
2
gradebidmi: &8 (16)
® 3q
Now,
2 0 g st Digye
q=a—%p+5§-5 (17)

Because the entropy production is a second order
effect (cf. (14)) we may neglect the second term
on the right hand side of (17). From (11) we derive

3g 3%k 2:ca%h
= R 18
op Ipdg 4 an AL

Combination of (17) and (18), and taking account
of p = Ug dp/ox leads to:

5 2 aZh azh 2 . 2
= ShETN Sip;
RHCLUTE (19)
Using formula (3.3) from Becker (1972) and the
linearized Euler's equation Po Uw 2U/2Xx = =3p/3x,
we may recast (19) into the form:
=3 U TR @t . 2
q = (—2 = —3:) (—2)‘,_., {lti % (20)
= =] bm

Here, ''a'" denotes the equilibrium sound speed and
""b"" the frozen sound speed.

Finally, combining (7), (16), and (20) yields the
following expression for the drag coefficient Cp*

2
D 2tu 1 1 du
= = = (— - —) || (=) dxdy (21)
ﬁ”ugf 1/2 1 aﬂf 2 j[ IX

Cp*
0

Incidentally, (21) might be interpreted in terms

of bulk viscosity, since in the near-equilibrium

limit the effects of relaxation are equivalent to
the effects of finite bulk viscosity (see, e. g.,
Becker 1972). Note that for reasons of thermo-



dynamic stability ae is always smaller than be 3
consequently cpis always positive, as it should be.
A result equivalent to (21) has first been derived,
under the severe restriction to vibrational relaxa-
tion of a perfect gas by Romberg (1967).

Case b: Near-frozen flow. Here T > /U .
Therefore, the value of q nowhere deviates appreci-
ably from the upstream equilibrium value q(pg,; A
Now,

ﬁ(p,s)=a(p,,sm)+§ (p=ps,) + :;—ZL (s-s) (22)

The third term on the right hand side is again
neglected as a second order effect. Hence, using
(18), we obtain with G(pe, Se) = q:

2
;¥

>%h )
aqz (=<

3p3q (23)

qlpss) ~g. == ( (P = Pe)

The linearized Euler's equation yields p = Peo=
- Qe Ug (U - Ux ). Using this and formula (3.3)
from Becker (1972) we derive:

2 1 1 3 h 2 2
L (—2"—2) (_200 Um(
9q

R

o= Ouge )i i 2k)

(9-q)

Combining (7), (14), and (24) yields the following
value for the drag coefficient cpt

S Eh T
7 bq}' 12

jg (u-uob)zdx dy (25)

L  DETERMINATION OF THE FLOWFIELD

In order to evaluate the integrals in (21) and (25)
for a given profile one has to solve the linearized
flow equations for equilibrium and frozen flow re-

spectively. For subsonic flow a velocity potential

<P'exists which satisfies the equation

2. i 23
]
(1 -1 =E + 2% -0 (26)
dx Ay
The velocity components u, v are given by
- _ 3¢ _ 3¢’
W= g =52 » V=g (27)

In (26) Mo has to be chosen as the equilibrium
Machnumber uo/a. in case a and as the frozen
Machnumber U /bes in case b. The profile shape is
given by (see figure):

upper side: yu(x) YC(X) + Yth(X)

(28)

lower side: y](x) YC(X) = yth(X)

The centerline of the profile is given by y., and
2yy, is the thickness of the profile. Apart from

' 0 for x* + y*= oo , the potential has to sa-
tisfy the following boundary conditions on the x-
axis between x = o0 and x = 1:

dy dy dy
e’ u c th
3y~ e Voo G * Yeo for y = +0  (29a)
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dy

Tl
* dx

dyc

o dx

%Ri LS R b ek y = -0 (29b)

y % dx

It is convenient to split the potential into two
parts:

TN )
P =%+ Pho (30)

satisfying the following boundary conditions:

3?’ dy

C= = +

ot Uos e for vy 0, 0 %] (31)

and

APth 9 ¢h
=+ = +

T S UeTx fory=%0, 0 sx &1 (32)

The potential ‘P;_determines the 1ift of the profile,
while cpihtakes account of the displacement effect
due to finite thickness of the profile.

It is obvious that @®. together with gl/ax and
a*p) /3x% change sign when ye is changed into -y,
whereas <k, is unaffected thereby. This change
means a mirror reflection of the profile, and hence
also of the flow field, at the x-axis. Such a re-

flection leaves the total entropy production and,
(1}

therefore, also the drag unchanged. In case 'a"
the drag is proportional to
Bl - R
3P Peh, 2
j (——C'I' ‘Fth) dx dy = (33)
3 2 2
X X
2, 25 2L F
3P 2 2 Rk
JT( ‘EC) dxdy+JJ(atgth) dxdy +2 ZC zth dxdy
dx dx Ix" Ix

The last term in (33) changes sign under reflection.
Because the drag is unaffected by reflection, this
term must vanish. Therefore, the total drag is the
sum of a drag component due to y. and a component
due to yy, . The same obviously holds true for case
Uh'', |n other words: Finite thickness and 1ift both
contribute to the drag; the two contributions are
additive.

Application of the Prandtl-Glauert-transformation:
%' (x,y) —-1—cp( W, =1 - w2y 6w
X = X, 3 = =
e n_2 o
leads to the Laplace-equation:
(35)

After splitting the transformed potential ¢ into
P = Q.+ Yy, the boundary conditions can be writ-
ten as follows:

Ll dyc
el
for TL="_‘0, ogxsl (36)
dPeh 9Yh
—_—= tuy
'a-rL - "®dx

The drag formula (21) is transformed into



aZ‘I"th 2 azq’c 2
cp=°C jj {(axz ) + (axz ) J dx dy (37)
with
1 5. 73/2

-1y a-nd

P beo

gk EEEE (38)

The solution for e and P, can be written as:

1

lﬁ‘?th(x,rl_) = um] Iq(g)]n (15 '§)2+ (liL)z dg (39)
9

ZEQPC(X,Q) = u,l ‘[X(E)arctg n dg (40)
o ik

Here q and ¥ are a dimensionless source and vortex
distribution on the x-axis. These distributions are
determined by yy, and yc respectively (cf. Weis-
singer 1963). The source distribution has to sa-
tisfy the ''closing condition':

fq (g) dg =

and the vortex distribution is subjected to the
Kutta-Joukowski-condition (smooth flow at the trai-
ling edge):

(41)

Y1) = o (42)

The expressions (39) and (40) have the following
properties:

I¢

——a{" - fun W (13)
Jp fornp=* 0,0 sx¢1
== g _g(;) (4h)

The total area A enclosed by the profile is given
by

b dyth 2 (
J =-1 ng(f) df (45)

Finally, the lift coefficient ¢, of the profile is

given by L
I 5 1
2 2 2p! P S I
¢, =— | 2] -Fl)ux = Y(5)dg (46)
L= o] J X ax \, 2
= 1-M
o y-+0 y:—o e

5 PROFILE WITH MINIMUM DRAG
FOR NEAR-EQUILIBRIUM FLOW

Inserting the expressions (39) and (40) into (21)
one obtains, after rather lengthy mathematical de-
rivations, the result:

1 1
Spen ¢ d (§) dg _
y Y (47)
1
-WJY(;) dgds 4:
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Here, ¢:denotes the Cauchy principal value of the
integral.

(47) is the starting point for finding the shape
of a profile with given area A and given lift-
coefficient chhnch has minimum drag coefficient
cn: The variation of cy/C, with (41), (45), (k46)as
auxiliary conditions taken account of by three
Lagrangian multipliers*i,ﬁq v, is:

Jéq(g)dg [ds qu(g) e "’5“"*]

(48)
6? )dg[d; (;C?(E) J

The derivation of (48) from (47) is valid only if
q and ¥ are differentiable and satisfy the condi-
tions g(1) = ¥(1) = qo) = ¥(o) = o; that the so-
lution of the optimum problem satisfies these con-

6(_—4_ 3 2u

]_

™)
=t

ditions can be confirmed a posteriori (cf. (51),
(52)).
For dc_ to vanish, the following equations have
to be satisfied:
1
d £q(8) =
ngEE-,; df = AGE (49)
o
1
d (£)
—=C—df = ¥ (50)
dsfﬁ-s :

The solution of these singular integral equations
is well-known from classical aerodynamics (Weis-
singer 1963). Taking account of (41), (42), (45),
(46) we can write the result as:

i@ = ?—2 1-29 (/X (g -5 (51)
2
YQ - e \/f M2 \/$ (1-% (52)

The corresponding profile thickness and centerline

are:
Vp () =§—.6|, 2 [% (= ?)] (53)
Yo lelee % g 1 - sz ? (1 - ?) (54)
Finally, the two contributions to the drag coeffi-

cient are:

16 2
Spen= 7 © (A1) (55)
1 2o O 9
CD,C = ?.l:l, C CL (1 Mm) (56)
with C given by (38).

It is to be noted that the minimum drag profile
thus found is symmetrical with respect to x = 1/2
and has a sharp leading and trailing edge. The
calculated equilibrium flow field is also symme-
trical with respect to x = 1/2, and the flow is
therefore smooth not only at the trailing but also



at the leading edge. The assumptions of the smali
disturbance theory are therefore satisfied: for
slender profiles the disturbances of the parallel
flow remain small in all points of the flow field.
Flow round an edge leads to infinite values of
2¢/3x at the edge with consequent divergence of
the drag integral. Of course, in such a case the
small perturbation theory is no longer applicable
in the whole flow field. However, it is clear that
flow round an edge would considerably increase the
drag, -as would also Flow near the stagnation point
at a rounded nose of the profile. Therefore, the
optimum profile must have sharp leading and trai-
ling edges with smooth flow at both edges. The

profile shape is shown qualitatively in the figure.

6  ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution by

Dr. J. Wellmann to whom we owe most of the mathe-
matics underlying section 5. We also thank Dr. H.
Buggisch for many valuable discussions and sugge-
stions concerning the subject of this paper.

7  REFERENCES

BECKER, E. (1970). Relaxation.effects in gas-
dynamics. The Aeronautical Journal, Vol. 74,

pp. 736 - 748,

BECKER, E. (1972). Chemically r=acting flows.
Annual Review of Fluid Mechanics, Vol. 4,
pp. 155 - 194,

OSWATITSCH, K. (1945). Der Luftwiderstand als
Integral des Energiestroms. Nachr. Ges. Wiss.
Gdttingen, Math.-Phys. Klasse, Vol. 88.

ROMBERG, G. (1966). Widerstand und Schub in statio-
ndren Strémungen ohne duBere Kr&dfte. Z. Angew.
Math. Mech. (ZAMM), Vol. 46, pp. 303 - 31

ROMBERG, G. (1967). Uber die Relaxation der Mole-
kulschwingungsfreiheitsgrade in stationdren Gas-
strémungen. Journal de Mécanique, Vol. 6, pp.L43-78.

WEISSINGER, J. (1963). Theorie des Tragfliigels bei
stationdrer Bewegung in reibungslosen inkompres-

siblen Medien. Handbuch der Physik, Vol. VIII, 3,
pp- 385 - 437.

493



