6th Australasian Hydraulics and
Fluid Mechanics Conference
Adelaide, Australia, 5-9 December 1977

Stratified Flow Over a Long Obstacle: Theory vs.
Experiment

P. G. BAINES
Research Scientist, CSIRO., Division of Atmospheric Physics, Aspendale

ABSTRACT

This paper describes an experimental study of the flow of stratified fluid over a long slender
obstacle in a channel when the flow becomes sub-critical with respect to the first internal

wave mode.

A general description of the nature of the flow field is given, and various properties are compared
quantitatively with predictions from the linearized-boundary-condition theory and with a quasi-linear

extension of this theory by the author.

Some measure of agreement with these theories is obtained,

provided that the flow is not too close to criticality for any mode; in the latter case, non-linear effects

of a hydraulic character become important.
1 INTRODUCTION

There are several theories which aim to describe
the flow of stratified fluids over two-dimensional
obstacles. Of these, the most commonly used (part-
cularly in a meteorological context) is the linear-
ized-boundary-condition (LBC) theory, which is
applied to obstacles of small height (e.g. Brether-
ton 1969, McIntyre 1972). A second type of theory
is the kind due to Long (1955) and Yih (1960) which
may be applied to obstacles of arbitrary height but
require assumptions about the flow properties far
upstream. This type of model has been compared
qualitatively with observations by Long (1955) with
reasonable success, but a more detailed and quant-
itative comparison by Baines (1977a) shows that it
is not applicable in general, because the motion of
the obstacle (relative to the fluid) generates
motions which propagate far upstream and hence
violate the implicit assumption of no upstream
influence. Also, the only quantitative experiment
(to my knowledge) which has been carried out to
test the LBC theory is that by Smith (1976), who
found, in both the atmosphere and the laboratory
for a two-layer configuration, that the theory
predicted the lee wave-length correctly but under-
estimated the amplitude by a factor of four.

In this paper quantitative observations of flow
over a long slender semi-elliptical obstacle are
compared with corresponding predictions from LBC
theory and with those from a quasi-linear theory by
the author (Baines 1977b). The latter may be
regarded as an extension of the LBC theory which
takes account of the obstacle's finite height by
using the concept of a travelling forcing field.

2 LINEAR AND QUASI-LINEAR THEORIES
With horizontal (x) and vertical (z) axes fixed

relative to the topography the dynamical equations,
linearized by using the Oseen approximation, become
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N is the Brunt-Vdisdld frequency and U is the
velocity of the obstacle through the fluid. The

notation is standard, and a list of symbols is given
in the appendix. Boundary conditions are
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for flow in a channel of depth D. The conventional
linear theory then replaces the first boundary
condition by
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This approach has been formalized by McIntyre (1972)
as a perturbation expansion in powers of small
obstacle height, and yields no motion far upstream
at second (and probably all) orders, and lee waves
downstream, For the experimental situation studied
here, with a semi-elliptical obstacle of height h and
length 2a, in the limit of large time this theory
gives for the stream function

Y=o upstream ,
n
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where ny is the largest integer less than K=—. The
various terms in the series represent the lee-wave
modes.

It has been shown by the author that the above
formalism is not a sound procedure, because the
transfer of the lower boundary condition from
z=h(x) to the horizontal surface z = o changes the
mathematical character of the problem from a well-
posed one for the 4th order partial d.e. to one in
which the boundary condition is specified on a
characteristic, and that consequently part of the
solution is lost (including, in particular, the
upstream part). Further, this part cannot be
regained by an expansion to powers of any order in
h if the boundary condition is always applied at

zZ = 0.

In an attempt to surmount this difficulty and incor-
porate the finite height of the obstacle (however
small) the author (ibid) has constructed a ''quasi-



linear" model based on a travelling forcing field
caused by potential flow over the obstacle, which
derives from the transient solution of Bretherton
(1967). Approximations made essentially involve
the neglect of non-linear effects in the body of
the fluid. This solutien is for infinite depth and
reduces the potential flow as N = 0 and to the LBC
solution as h=+0. It alse reduces to Bretherton's
(1967) slow flow solution as U - 0, but i:iNﬁeglon
of applicability is probably restricted to ﬁ—-belng
small,

The corresponding solution for the case of finite
depth may be obtained from the solution for infinite
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Note that, if h is small, the upstream terms are
0(h?) and that the downstream terms are identical
with those of equation(5) to first order. Also, the
solution becomes singular as K approaches an integer
(as does equation (5), although less dramatically).
This will be commented on later, but it clearly
indicates that these theories are not applicable if
K is too close to an integer value, in which case
non-1linear effects in the fluid must be important.

3 EXPERIMENTAL APPARATUS

A schematic plan of the apparatus giving relevant
dimensions is shown in figure 1. The tank was
filled to a depth of 34.0, 19.0 or 9.3 cm with a
stratified fluid of constant Brunt-Vdisdld frequency
Flow visualization was by means of neutrally
buoyant beads, and the tank was illuminated from
below through the transparent bottom by fluorescent
lights which were collimated so as to illuminate
the central region (spanwise) of the tank. The
flow field immediately over the obstacle was illum-
inated by a fluorescent light overhead which
travelled along the tank with the obstacle.
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Figure 1 Schematic plan of experimental layout

The semi-elliptical obstacle was towed at a const
nt speed starting from rest from right to left
1long the tank, and data wre recorded by means of
streak photographs taken by four cameras three
it fixed stationary positions down the tank, and a
fourth on a moving trolley which along

with the obstacle, recording the flow =1d immed-
iately behind it. The three stationary cameras
gave a check on the constancy of the towing speed,
showed the development of the flow as the obstacle
travelled down the tank, and provided a clear

picture of the flow around the obstacle. The
fourth (moving) camera gave measurements of the
wavelength, amplitude and phase of the lec waves.

Observations were concentrated on the deepest of

the three depths mentioned above, since the primary
aim was to test theories based on small obstacle

height

travel

4 OBSERVATIONS AND COMPARISON WITH THEORY

The structure of the steady-state flow patterns (as
attained in the channel) in the immediate vicinity
of the obstacle as seen by the stationary cameras
is shown in Tigurg 2 for increasing values of K
for D = 34.0 cm (= = 0.076), the deepest of the 3
depths mentioned in the previous section. For
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Streamline flow patterns over a moving

obstacle. The patterns were apparently

steady except for the motion extending

on the upstream side for K = 1.01, 1.12,

2.28. Arrow lengths indicate relative
velocities



D = 19.0 cm the general flow patterns were similar
for corresponding values of K, but for D = 9.3 cm
he flow was clearly in a different regime with
T-_oo large for a linear theory to be relevant.
Bhis shallow case will not be discussed further
here,

For the supercritical case K < 1 the flow is approx
imately symmetrical over the obstacle, resembling
potential flow, but this is immediately followed by
a region of descending motion behind the obstacle,
forming an ''eddy' whose length increases linearly
with time. This "eddy'" is terminated by a region
of rising motion which travels at a speed which is
a littlﬁnslnwer than the speed of long internal
waves (—) of the first mode. Behind this region
the onlf motions are small weak eddies with ne
discernible crdered structure. As discussed below,
although this flow is supercritical it has a resem-
blance to the familiar sluice jump - hydraulic jump
combination of subcritical open channel hydraulics.

As K increases from 1 to 2 the motion over the
obstacle progressively changes from a mode 1 to a
mode 2 structure with the second eddy initially on
the lee side progressively surmounting and compress-
ing the first. The front of the initial eddy
progresses upstream with the long wave speed, but
for K z 1.5 it eventually cuts off and terminates,
apparently due to non-linear effects associated with
the second eddy partially compressing the first,

For the lee waves downstream, the theoretical pre-
dictions of the LBC and ''quasi-linear" theories are
virtually identical (apart from Kv integer where
neither is relevant) for the obstacle shape used
(z = 0.085). The theoretical curves are therefore
drawn as one, and figure 3 shows the comparison
with the experimentally observed wavelengths of
mode 1; figure 4 compares the amplitudes and phase
(phase ¢ is defined by Y= -A sin (kx - ¢) where A
is positive). Provided K is not near unity the
theory and experiments exhibit a general (though
imperfect) agreement for the properties of the lee
waves.,

Results for a similar comparison of motion on the
upstream side are shown in figure 5, where the
termination of the mode 1 upstream motions for

K 2 1.5 is indicated (such termination is not
observed for the higher order modes when K > 2). The
agreement here with the quasi-linear theory is not
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Figure 3 Wavelength/depth as a function of
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Yigure 4 Amplitude and phase of lee waves. The
dashed line denotes the phase according
to LBC theory, the solid line according
to the quasi-linear theory. The Bessel-
function structure of the wave amplitude
causes the phase to change by a factor of

m when the former vanishes

as good as for the lee waves, but the general trend
of the results is consistent, except for K near
unity. Corresponding theoretical curves from the
theory of Wong & Kao (1970) for a source-like semi-
infinite obstacle are also shown. The stream funct-
ion upstream from this model is given by
Ul ST
Rl 2 el L 8

e e (8)
for the first mode, and the corresponding curves are
also consistent with the experimental results.

Near K = 1 non-linear effects must become important,
because of a resonance effect with the "columnar
disturbance modes' of infinite wavelength. In these
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Figure 5 Upstream amplitudes of the maximum hori-

sontal perturbation velocity measured

near z = D (i.e. at the tgﬁzof the

channel), scaled with U (IrJ, as a funct-
ion of K. See text



circumstances non-linear effects may be accommodated
(in part) by making the assumption that the flow is
everywhere in hydrostatic balance. A numerical
procedure for investigating such flows has been
developed and used by Su (1976), Lee § Su (1977).

A discussion of this model is precluded here by
space limitations, but if one assumes that a "crit-
ical" flow profile is attained over the crest of the
obstacle and that the upstream velocity profile must
be sinusoidal, the situation resembles the sluice
jump - hydraulic jump situation of classical hydr-
aulics, and profiles immediately upsteam and down-
stream of the obstacle may be determined. The theo-
retical upstream amplitudes so obtained are shown in
figure 5, and an example when the flow is just sub-
critical upstream (K > 1) is shown in figure 6. When
the flow is supercritical upstream (K < 1) a similar
phenomenon occurs behind the obstacle (rather than
over it), and this is the subject of further study.

5 CONCLUSIONS

St For uniformly stratified two-dimensional flow
over a long slender obstacle in a channel, the wave-
length, amplitude and phase of lee waves downstream
are predicted with reasonable accuracy for mode 1
(with % < 0.14) by both the LBC and quasi-linear
theories.

bt The LBC theory fails to predict the observed
motions upstream; the agreement with the quasi-
linear theory is fair, but so also is that with the
quite different source-like model of Wong & Kao
(1970), and this upstream comparison is therefore
inconclusive. The upstream motions for mode 1 may
become transient over the obstacle when K > 1.5,
apparently because of non-linear effects over the
obstacle associated with higher order modes.

Tt For K near unity non-linear effects must be
important, and the flow has some similarity with
classical hydraulics,
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7 APPENDIX - SYMBOLS

x  horizontal coordinate

7 vertical ]

t time

u  horizontal velocity perturbation
W vertical Wl 4

Y stream function 1

U mean horizontal velocity of fluid relat-
ive to obstacle

Brunt-Vaisdla frequency

channel depth

obstacle height

obstacle half-width

Bessel function
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Figure 6 Velocity profiles obtained from the hydro-
static model for a case with K near unity.
These correspond approximately to posit-
ions indicated by the arrow in the three
photographs.
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