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SUMMARY

method is used in conjunction with a frozen vorticity assumption.

A method is presented for predicting the mean wind flow over low hills.

The finite element
Computed results for a number of simple

escarpments compare well with measured data from wind tunnel models and field tests.

1 INTRODUCTION

It is well known that wind speeds above hills may
be much larger than those at equivalent heights
above flat ground. This phenomenon results from
the action of two non-linear mechanisms represented
in the equations of motion by the convective terms
and the turbulent Reynolds stress terms. The
Reynolds stress terms are particularly difficult to
model mathematically as a closure assumption is
required, to relate them to the mean flow variables.
For uniform flow a commonly used closure assumption
is derived from Prandtl's mixing length hypothesis
and results in the familiar log profile for the
mean horizental velocity. Such a profile can be
matched -well to existing data for wind flow over
level . ground, subject to the choice of a suitable
'roughness:length' yo. yo is found empirically to
be of the order of one: tenth of the height of the
local roughness elements of -the underlying terrain.
(Esbu, 1972). No such simple closure assumption
has yet been demonstrated for wind flow over uneven
ground, but several theoretical models have recently
been presented (Jackson and Hunt, 1975, Deaves,
1976) using the uniform flow.closure assumption in
this context. These analyses were restricted to
hills of small slope. _.In both cases the slope res-
triction arose from the mathematicé of the solu-
tions themselves but it is doubtful whether the
closure assumption, obtained effectively for uni-
form flow, would remain valid for more severe slopes.
An important result which emerged from the matched
asymptotic analysis of Jackson and Hunt was that
the action of the Reynolds stresses appeared to be
significant only within a small inner layer close
to the ground. This raises the possibility of
seeking a solution to the problem by neglecting al-
together the action of the Reynolds stresses and
considering only the effects of the convective
texrms. Hopefully such a solution may give an ad-
equate representation of the flow except within a
thin layer close to the ground. This approach
forms the basis of the analysis presented in this
paper and the predicted values of wind speed corres-
pond well to measured velocity profiles from wind
tunnel models, and field measurements.

2  THE EQUATIONS

In this paper two dimensional configurations only
are considered. It is assumed that the atmospheric
boundary layer upwind of the hill has a prescribed
velocity profile and hence a known vorticity dis-
tribution. It is also assumed that the hill is
sufficiently low for Coriolis and buoyancy effects
to be negligible throughout the solution region,i.e.
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the present solution is proposed only for low hills
that lie well within the neutrally stable atmos-
pheric shear layer close to the earth's surface.

The solution region and its boundaries are shown in
figure (1). Boundaries C; and C2 are taken at a
large distance upstream and downstream of the hill
and it is assumed that mean flow has no vertical
component at these stations. It is also assumed
that the horizontal velocity profile u = upl(y) is
known on the upstream boundary. The ground eleva-
tion is defined by the surface C3 and it is assumed
that a control surface C4, at a large height above
the ground, acts as a stream surface forming a
ceiling for the solution region.
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Figure (1) The solution region and boundaries

The horizontal and vertical mean wind velocities
are defined in terms of a stream function | where;
_oW

u = 3y’ v o= (1)
It is assumed that the Reynolds stress terms are
negligible throughout the region, as are the viscous
stresses. Vorticity is then convected along
streamlines and a vorticity equation results of the
form;
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where wg (¥) is defined implicitly by conditions at
the upstream boundary, viz:

w_ o= - auo‘
o
3y

(3 (a))




v uo(y)dy. (3(b))
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In terms of the stream function § the boundary con-
ditions on the upstream and downstream boundaries
become;

Yx = 0 on C; and C2 (4)
On C4 and C3 ¢y has constant values of 0 and yg, i.e.

d
b= = j Up (y}dy on C4, (5)
o
Y = 0 on C3 (6)
To avoid the presence of large variations in vortic-

ity close to the ground the boundary C3 is replaced
by a boundary C3' raised a small distance & above
the ground surface. In the results presented in
this paper § was taken to be of order 10 x yo where
Yo is the roughness length. We thus assume that a
streamline exists close to the ground just above
the local roughness elements. It is found that
the solution is insensitive to 6. The boundary
condition on C3' replacing that on C3 is then
given by

8
U I uo (y)dy

The problem then reduces to the solution of
equation (2) within the region R, bounded by C1, Cj
C3'and C4.

(6(a))

The boundary conditions for ¥ are then given by
equations (4), (5) and (6a), and the function wg (V) ,
occurring in equation (2) is defined implicitly by
equation (3).

3 THE SOLUTION METHOD

A numerical solution to the above problem was
obtained using the finite element method, (FEM).
The FEM was chosen in preference to alternative
numerical schemes, notably the finite difference
method, (FDM), (Taublee and Robertson, 1972), as
the FEM offers greater geometrical flexibility.
This property is essential in the present problem
for the following reasons;

(i) Though severe purturbations in the flow occur
only in the immediate vicinity of the hill the
solution region must extend much further if
the effect of the boundary conditions on Ci,
C2 and C4 is to be acceptably small. By
choosing large elements near the outer
boundaries and much smaller ones near the hill
the FEM enables the use of an economic and
continuously varying mesh, a facility not
easily accomplished with the FDM.

It was necessary to devise a numerical scheme
which could easily accommodate an arbitrary
ground profile, curved if necessary. Using
curved isoparametric elements this is simply
achieved with the FEM. With the FDM a ‘'saw
tooth' approximation would be required near
the ground and the task of automatically
generating suitable meshes for arbitrary
ground profiles would be difficult if not
impossible.

(ii)

A Galerkin approach was used to formulate the prob-
lem in terms of finite elements. An outline of
this process follows:

An approximate solution y' of equation (2) is
sought where ' is a linear combination of a com-
plete set of functions Wi (i = 1, ~ N), as yet un-
specified. ¥' is chosen so that it identically
satisfies the hard boundary conditions on C3' and
C4, i.e. ¥' = Y5 on C3"' and YP' Vg on C4. The
residuals of equations (2) and boundary conditions
(4) are then denoted by R1, Ry and R3, i.e.
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V2P' 4 wo(P') = Ry (7

Px" Rz on C1, ¥yx' = R3 on C3. (8)
The residuals are then constrained to be zero when
weighted with the functions Wi over R, C1 and C2
respectively giving;

in R,

(V2P' + wo (")) W; dxdy =0, (i=1-N), (9)
J ﬂ)x'Widy. =0, (i=1, - N, (10)
C1
J Ux'Widy = 0, (i =1, « N). (11)
Ca
Equation (9) may be rewritten;
R '(UJx'wix + U’y'Wj_y - NQ(\b')Wi)dxdy
'J Wi¥y'efds = 0, (L =1, ~ N), (12)
C1+Cy+C3' + C4
where fi is an outward unit normal vector.
Wi will be chosen so that Wi = 0 on C3' and C4 .
Equation (12) then reduces to;
(U "Wi, + Yy'Wi, - wo(Y')Wi)dxdy = O,
R 5 =1, . 12@)

The region R is now divided into a number of
elements defined by M nodes. The nodes are num-
bered 1, - M in such a way that the first N nodes
do not lie on C3' or C4, (N < M). Y is then
defined at any point in R by a matrix equation;

b= [N, v)] (¥} (13)
where [N(x, v)] = [N1, N2 - NM] and {Pr={¢7,92Pp}T
y; is value of | at the itM nodal point and Ni is
the shape function for that point defined implicitly
inside each element by the appropriate component of
an explicit element shape matrix. The values of
$i, i =1, » N, are unknown but the values of ¥,
i N+ 1, - M, are assumed known and are given by
either Yg or yYg: This automatically satisfies
the previously assumed boundary conditions that
y' = Yg on C4 and ¢' Yg on C3'. The weight
functions W; are now chosen so that Wi Ni, i=1,
* N. This choice automatically satisfies the con-
dition that Wi = 0 on C3' and C4. Substituting
into equation (12(a)) then gives the matrix
equation

[x] {v} = {F()} (14)

where;

Kij = (NN, + NinjY) dxdy, i=1,+N,j=1,-M (15)

and Fj = J wo (P)N{ dy, 1 =1, -~ M. (16)
R

The matrices [K] and {F} are assembled from the

appropriate element submatrices in the usual way,

(Zienkiewicz, 1971).

Equation (14) may then be solved for the unknown

nodal values of Y using an iterative scheme;

[x] {¥n+1} = (Fl¥n)}, 7
where Yn+l and Yp are successive approximations to
. The improved values of y are then used to
re-evaluate {F(y)} from equation (16). Conver-
gence is achieved when the fractional difference
between successive approximations is acceptably
small. Eight noded rectangular isoparametric ele-
ments were used with sixteen point numerical
Gaussian integration within each element. Equation
(17) was solved using a direct Gaussian elimination
symmetric matrix solver. The solution may be
greatly accelerated by the choice of an optimal
node numbering scheme which minimises semi-bandwidth
of the coefficient matrix.

4 RESULTS

Using the method described in the previous section
FEM results were computed for escarpments with
slopes 1:1, 1:2 and 1l:4. These particular



topologies were chosen since extensive wind tunnel
measurements are already available for comparison.
(Bowen and Lindley, 1977). The 1:2 slope escarp-—
ment is of particular interest since field measure-
ments for an escarpment of this form are also
available, (Bowen and Lindley, 1974).

In each case the finite element model comprised 200
elements with 661 nodes. The 'ceiling' C, was
placed twenty escarpment heights above the ground
surface. Variation of C, by five escarpment
heights above and below this level caused no
appreciable modification in the computed results.
The upstream and downstream boundaries C; and Cy
were of the order of ten escarpment heights up-
stream and downstream of the escarpment. The
solution was found to be insensitive to displace-
ment of C; and C; to positions further upstream and
downstream respectively. A portion of the finite
element mesh in the region near to the 1:2 slope
escarpment is shown in figure (2). This illus-
trates the flexibility of mesh size which is avail-
able with the FEM. The topology of a typical
element and its constitutive nodes is also shown in
figure (2).
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Figure (2) A portion of the finite element mesh

near a 1:2 slope escarpment

The wind tunnel results were obtained from a 1:300
scale atmospheric boundary layer tunnel which
closely approximated a power law velocity profile
of the form;

ug (y) = Ay®, (18)
with o equal to 1/6. The profile was created by
roughness elements of height 0.06H, where H was the
escarpment height, corresponding to a roughness
length yo of approximately 0.006H. FEM results
were computed for an incident profile given by
equation (18). Results were also computed for the
corresponding log profile with yo = 0.006H. The
results were almost identical and only the 1/6
power law results are presented in this paper.
field measurements for the 1:2 slope escarpment
were taken in a rural boundary layer near
Christchurch, New Zealand. The upstream profile
in this case was much flatter than that produced in
the wind tunnel, approximating to a power law
profile with o = 0.0816. For comparison with these

The
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field measurements an FEM power law solution was
computed with o 0.0816. A solution was also
computed for the irrotational case, a = O.

In all cases convergence of the numerical scheme
occurred after 4 - 6 iterations, representing a
CPU time of 480 - 600 seconds on a Burroughs B6718

computer. The convergence criterion used was that;
max (Eﬂil_:_iih] < 1073,
Yn

The results are shown in figures (3), (4) and (5).
The results are presented in the form of computed
and measured values of the fractional speed up (FSU)
at various stations upstream and downstream of the

escarpment. The FSU is defined by;
Foy = S4¥) = uo(y),

uo (¥)
where {i(y) is the total wind velocity at a height y
above the local ground level. FSU is thus a
relatively sensitive measure of velocity differences.

It can be seen that in all cases a good correspon-
dence exists between the measured wind tunnel data
and the appropriate FEM computations. This is
particularly so at the base and crest of the
escarpments where the FSU attains its minimum and
maximum values. Downstream of the crest the
effects of the surface roughness, which are
neglected in this theory, cause the FSU to decrease
near the ground. Even in this region, however,
the FSU is well approximated by the current theory
one hill height or more abowve the ground surface.
It is of interest to note that the apparent dispar-
ity between the field measurements and wind tunnel
data is predicted in this theory by the substantial
difference in FSU for the two vorticity distribu-
tions given by a 1.6 and o 0.0816.

5 CONCLUSIONS

A finite element frozen vorticity solution for wind
flow over hills has been shown to give results that
are closely comparable over a large region of the
flow with wind tunnel measurements and field data
for the limited number of cases so far examined.
These results appear to confirm the hypothesis that
the flow is dominated by the convective effects and
in particular the upstream vorticity profile.
Further wind tunnel and field tests are now in
progress to test the numerical scheme on more
general ground topologies.
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Figure (3) The variation of FSU with height for a 1:2 slope escarpment. Predicted and measured values.
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Figure (4) The variation of FSU with height for a 1l:1 slope escarpment.

Predicted and measured values.
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The variation of FSU with height for a 1:4 slope escarpment.
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Predicted and measured values.




