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SUMMARY The equations of an incompressible, steady bidimensional laminar boundary layer are dealt with

in the form of Von Mises variables and are controlled by wall suction or blowing. The cost function is mini-
mized by using the algorithm of steepest descent. The calculation of the gradient of the cost function is
carried out by introducing an adjoint state and using a finite difference scheme. A finite element techni-
que, to solve the same equations, is also outlined and a comparison between finite difference and finite
element numerical solutions is presented for one pressure gradient flow with wall suction. Some preliminary

results of the optimal control are also pointed out.

1 INTRODUCTION

During last years, the methods of optimal control
(Lions, 1968) have had numerous applications such
as the optimal control of non linear problems, of
variational inequalities, control of variable do-
mains, and control of eigenvalues. The field of ap-
plications has also been greatly extended to many
branchs of mathematical physics as for example the
physics of plasma, oceanography and fluid mechanies
(Glowinski-Pironneau, 1975). In this paper, we shall
study a fluid mechanics problem wich concerns the
development of a boundary layer flow subjected to
wall suction or blowing and we shall apply the op-
timal control technique to the governing equations
after having recasted them into (Schlichting,1968),
the Von Mises form. The control will be exerted by
the suction or blowing at the wall to attain cer-
tain desired conditions of the velocity profile at
a certain station.

In a first stage the development of the boundary
layer will be controlled by the means of the rate of
aspiration or blowing at the wall. In a second fu-
ture stage, the control will be applied through the
stream wise pressure gradient exerted by the outer
flow. This is directly related to the outer velo-
city gradient at the edge of the boundary layer.

In the following, the definitions, the formulation
of the optimal control problem as well as related
subjects such as the discretisation of the equations
using finite differences will be explained. The re-
sults of calculation, without control, for diffe-
rent values of the pressure gradient parameter and
wall suction is compared with a finite element
technique which is given in the text. Some first
results of the optimal control is shown also.

2 DEFINITION - MAIN EQUATIONS

The problem of optimal control applied to boundary
layer development as stated above can be defined

as follows. Consider a fixed station at x = X,
where we want to get a "desired" velocity profile

U, (X,y). An optimal distribution of the velocity
0% suction or blowing v_. (x) is thus looked for to
approach at the best this desired velocity profile
U,. It must be noted however that such a profile is

not always realisable.

Let us consider the boundary layer equations (fi-
gure 1) "Prandtl equations”. After introducing
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Figure 1 Boundary layer development

a modified Von Mises variables defined by :

=ilE H =—a—lk 1
WS s v _(x) e (1)
the boundary layer equations can be put into the
form :

Bu_ 3 du. 3u, ldp_

e LA e el (2
where u and v are the velocity components respec—
tively in the stream wise direction x and its nor-
mal y ; p denotes the pressure and v the kinema-
tic viscosity. The density of the fluid is taken
as unity. The boundary conditions associated with
equation (2) are :

u(x,0) = 0 ; v(x,0) = vo(x)

u(x,°°) = UE(X) (3)
and the initial condition is given by :
ulo,¥) = U, (¥) )

where U, (x) represents the local velocity outside
the boundary layer (see figure 1) and vo(x) is the
normal suction or blowing velocity at the wall.
Bernoulli equation which is valid at the outer ed-—
ge of the boundary layer is given by :
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dp EH.
dx Ue dx 9 (5)

The advantage of the formulation (2) compared to
the classical form of Von Mises equation (defined
by the function f = u2/2) lies in the operator
3/3%(u. du/dY). It can be seen that the non homo-
geneous boundary condition at y = » is automati-
cally satisfied if Uy(®) = U (o) and if du/3Y and
3 u/Bw2 are 1ntegrab1e in the neighbourhood of in-
finity.

3 FORMULATION OF THE OPTIMAL CONTROL PROBLEM

The equations (2), (3) and (4) are called the sta-
te equations of the system. The function Y=y (x)
is the control and the set of admissible controls

are :

W, ,=1v,0x v (x) <M}  (blowing) (6)

ad
or
Wy = {vD,—M £V (x) < 0} (7

Let the position X>o be fixed and let the desired
velocity profile Uy = Ugq(y) be given. One can in-
troduce the cost function J(v,) defined as

Iy Y= j:(u(vo,X) - Ud)z dv

which will be minimised on the setl ;. The control
function V, which realises this minimum is called
the optimal control. Note that unicity of the solu-
tion is not guaranted.

(suction)

(8)

The real problem is to characterize an optimal con-
trol. Unfortunately, one has only necessary condi-—
tions of optimality based on the calculation of the
gradient of the function J(v,). Thus we shall give

here a simple mean to calculate the gradient J'(vg).

For this, we introduce an adjoint state q = q(v,)
defined as the solution of the equatiomn

3q Bl gt

ax T vu(vo) Y * Yo aw ) ax ®
with the conditions

q(x,0) = q(x,®) = (10)

q(X,p) = u(v_,X) - Uy (11)
Thus the gradient J' can be written as

i e
J (VO) 2 jﬁ q(v ) Bw (v ) dv (12)

It can be noted that q is the solution of a rever-—
sed evolutipn problem.

4 NUMERICAL ALGORITHM

One is looking for an optimal control with the aid
of a descent method of the type "projected gradi-
ent'". This is a simple and a rapid method of cal-
culation, and it seems unnecessary to utilize a mo-
re sophisticated method because the cost function
is not a convex ome.

The principle of the employed algorithm is as fol-
lows. Let an approximation vX be calculated where
k denotes the level of iteration at which calcula-
tion is carried out ; thus one can resolve the sta-
te equations (2), (3), (4) which yield the solutiomn
uk+l, The adjoint state equations (9), (10), (11)
can in turn be solved to give ¢ . Using equation
(12), the gradient J' (v ) can be calculated.
Writing

kel ks K

wo g ndJd (vo) (13)
A major difficulty is the determination of the op-
timal n as indicated by CEA (1971).
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Finally, the wall suction or blowing velocity v§+1

at the level k+l is calculated as the projection
on the set of admissible control of Wk+1
k +1 k+1

1
e Prog./ ¥ (14)
In practice, for the determination of the adjoint
state, it is preferable to calculate the adjoint
of the digcretisation of equatiomns (2), (3), (4)
instead of discretisating equations (9), (10), (11)

5 DISCRETISATION OF THE STATE EQUATION AND OF THE
ADJOINT EQUATION

If the indices i and n are affected respectively

to the variables ¥ and x, the state equation (2)
can be discretisated using finite differences. This
leads to the following equation

n+l n
u. R

1 — L zzwz |:e rsz(u2)11+1]+(1_9) [52(112)?11

n+l
a0
o ap ui
where the parameter 6 is in the interval (0,1) ; i
can take the values 1,2,...(I-1), whereas n va-
ries from O to (N-1), where I and N are the number
of grid points caken for | and x respectively. For
the case of constant step of ¥ variable (AY = cons-—
tant), case that we shall admit to simplify the
equations, the first and second differences take
the form:

dp,n+l
D (15)

n+l n+l n+l
(611)- L -1
o sl e m#l Tkl n+l
€ ) Ul 2ui *ug (16)

F1 ., . . . g
The term (uz)g 4 is linearized in the following
manner :

(u?);

+ +
S g 8 L 02
i 1 1

17

The system (15) can thus be written on the form :

n+l n+l n+l

i ui+l + bi uy + Ci b 5 di (18)
where i n
v 0
a, =—2— - @y —;i%
i 240 AY
iod
u,
b, =1 4 2 gy ==y
i Ix AY
n+l n
u.
S - N S o |
i 2 Ay Ay
n
ui 1-26 n 2 N, 2 n 2
& TEe by agE M)t S 2 le ) e, I
d +1
= "
u.
i
and 1 = Ly wews I1 § 0 S Tymmmy N1

and a, = C = 0 by virtue of the boundary condi-
tions defified alongwith initial conditions by
equations (3) and (4).

The variational formulation associated with equa-
tion (15) can be obtained by multiplying equation
(15) by q*!. Ax.Ay and by taking the sum on i and
n. Here, qn+‘ represents the discretisation of the
adjoint state q introduced into equation (9). Thus
we get for all qn+1 the following equation :



NelesT

n+l n, n+l Ax n+I n+l n
z ! S = & 5 .
e iy e B )
—2u?+1 u? u?+] un )
% i i-1 -1
_v(1-28)Ax n+i[(u D2-2(uh) 24 (us_)?]
200 1
n+l Ax n+l( n+l_ n+l)
O £2ist e RA Kt Pl
+1
1 n+l EE_H =
+_un g (dx) AxAuﬂ = (19)
i

Now, one can give an elementary increase dv_, for

which corresponds the elementary increase o
velocity 6u. Neglecting terms of second order, the

the

vector (8u)} is obtained as the solution of the
next equation (Brauner, Gay, 1977).

nek n#l o, atl Ax n+l n+l
B e di(Suas =8t )q Ap=Bv — (8 e sus
A i b e w 1 e |
n+l n n+l -a n+1
+ Ut Alib e i+l 2 Sui 205% L ta
n n+l n+l n
+ Ou, 0u.
e Ll g g A )
Ax n+| n n n
\)(] 29) —w (ui+] -(Su].-_‘.l 2 uiuﬁui
n n n+l Ax n+l n+l n+l
e LT R B el ML e e
n+l
n+l
2 Ax q; =5 2 }
(u)? dx
i
N=1" I=1
N n+l Ax n+l n+l_ n+l
R TEN T LR T i (20)
n=0 i=l

with the conditions on du

n+l
Su =
[s]

du =

ug %
where an= =Vl EE;— —'EKJ
un-l
B = Lk + 2v8 !
n Ax Ayp2
n-1 n
] ui vo
T VO RE T 2hy
n+l n
n+1 u
An“ 1+I(v6 Wz 2y (1-26) v sz)
+1 n
u, +(1=28)u. n+l
n+l1 1 i i 1 dp.
+ —_—— e e e
3. o Y Ap2 * )z(dx))
u = :
s BT
N Ax

and<i =100, I8l 3 ni=

The boundary conditions are qz = qi = 0 for all n.
It is to be noted that equation (24) is nothing
else than the discretized form of equation (9).
The systems of equations (18), (24) being linear
and tridiagonal are solved using the method of
Gauss.

6 FINITE ELEMENT SOLUTION OF VON MISES EQUATION

In order to get a solution for the Von Mises equa-
tion we have proceeded by two methods : the finite
difference one explained above, and the finite ele—
ment one ; the details of which are given below
(Gay, 1977 ; Assassa, 1977). No optimal control is
introduced into the equation, at this stage, as

was the case for the finite difference solution.

Defining the function f£(x,)) = u?/2, equation (2)

o n+l . A
The adjoint state q; is chosen in a manner that takes the form :

the left and side of equation (20) is equal to

the increase 6J of the cost function. If the cost gf +y i) == af ; g (Uzym VT ——7 (25)
function J(v ) is approximated by i i
°1-1 N 5 The boundary conditions are thus given by :
= I A T I
J(vcs) i=l(u1 u1d) & (21) =0 ; £=0
the increase §J is thus given by = §(x)" ;- fi= UZ/
I~1 2
N N
§3 = 2 L G = Su, A 22 s .
. o] (ul uld) S (22) where, for the numerical calculation, the boundary
condition at infinity is replaced by the one taken
also we have : at the edge of the boundary layer.
N_
§J =1L £ Gvo In the present work, the finite element approach
n=o v is based on the method of Galerkin (Bonnerot,

thus by
equation (20), we obtain :
I=1
L PR q?(u? -u )
n Z AT 1 =1
v i=1]
9J
== =g
v
o

After rearrangement,

5.
n qi+1

n
% Bn 9y

t Yn q?—] = An

identification with the right hand side of

(23)

the reverse equation statis-
fied by the adjoint state q can be put on the form:

(24)
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Jamet, 1975). Thus using certain shape functions
¢ (x,V0) which vanish at the wall and at the edge
of the boundary layer &8(x), equation (25) after
multiplication by &(x,y¥), integration on the ele-
ment [Xx1,%,), (O,ﬁ(x))i and integration by parts
can be writfen in the following form :

X, §(x) d(xz)
3d
= I If b dydx + j @(xz,w)f(xz,xp)du,
x] 0 0
5(x ) %, §(x)
—f <l>(x1,tiz)f(xl V) dv -j 5 £ vo(x) g—$ dipdx
0 Xy 8(x)
= .12. 5 j q;a—Uz dq’)dx
X 0

1



X $(x)

)

e ) g s (3f/0¥)2
b

3f 39 ‘
e V2E dvdx

d¥dx (26)

The different integrals of the equation (26) are
calculated numerically using the transformation
shown in figure (2)

r's
-n ~n+1
i+1 P-
1 i+
o
i
: z
an 1
i

Figure 2 Transformation of the element KE

An element K? in the plane (x,Y¥) is tranformed to
a square of unit length in the plane (£,n) using

the transformation :
5 = R (27 .a)
n n+] n n+l
¥y = - - -
(1-n) [(-0)¥; + & v, ]en[(-0)¥7 +evi ]
(27.p)
The Jacobian of this transformation is given by
- - n+g_ n+&
d¥dx Ji(E,n)dEdn k(?i+1 Wi )
f g : : n+l n
where k is the step in the x direction k:= x -x

and

yo

g S o | n+l
T (1 E)?i + g Wi

In the plan (£,n) a function F(E,n) defined in K?
will be approximated by the polynomial form :

F(E,n) = a+bf+en+dén (28)

It follows that F is determined by its four values
at the corners of the square K2 [(Osssl),(Osnsl)}
as i

F(g,n) = (1-n) (1-§)  F(0,0) + (1-n)EF(0,1)
+ n(1-E)F(1,0) + EnF(1,1) (29)

As far as the integrals (26) in the system (&,n)
are concerned, they are numerically calculated for
each element K? by the formula :

”’ F(x,¥)d¥dx = .U F(g,n)J5dzdn
¢ E
K3 S
1 n
«in R MY (30)
4 £=0, 1 i
n=0,1

where K. is the element in the plane (&,n) that
corresP%nds to the element K% in the plane (x,¥).
The shape functions & (&,n) used in the calcula-
tion are presented in figure 3.
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Figure 3 Shape function at the point P?

Thus, the initial equation (25) can be put in the
linear tradiagonal matrix form :
n+l n+l

e o f b R +C., £
| 1AEE: 1

n+l

bbb Tt (31
with 1 = 2, 3,..., (I-1) where I is the number of
nodes taken accross the boundary layer. The coef-
ficients of equation (31) are given by :

s 4l §n o
1, n+l _n k n+l  vkiwd=] i vk i "i-1
A= (¥ —yTy - X gRTI X — 2k
o T s o Bl | 4 o 4 n+l_ n+l n ,n ,n
A i P e S
1 i-1 o LA S o
n, n n n n, .0t o -3 A
R el TR T T i
i & Lntl_on+l” n+l oo+l Gl B Gn W
ie174 i i-1 S S S
1, -l awl
5 §{gi+l i—l)
Sn +Sn
_ —lonElien T D) e £ e
G e T R A1yl
i T
n n
sk Sittin
b8 ) o i e |
asi ?i wi—l
S e n+l_,n 1 n n+l_.n
DS P ad e B Y ety
Y n
k n.n _.n vkr, n ny i k=l
* Z-vo(fi+] . —1)+4 [(Si-l+si)wn_wn
i i1
o AR n n 3 n, n_ n 2
a o e By ok p ) )
= (s 48, )= 2 N ]
i sdl Yyl sl Yl _yP n_,n
i+l i N, i M | i 1i-1
n n+l
I m,.n il g -g n+l  n+l
S o - + £
p £ 00 ) el D

n n
i (Wi+1 wi—l)]
with gn=(U2/2)n and st = (VEE)?. The last coeffi-
cient is mSdified to take into consideration the
outer boundary condition,

7 SOME NUMERICAL RESULTS

Numerical computation of the finite difference and
finite element solutions were carried out on C.D.C.
7600 computer using Fortran IV language programs.
Numerical results of the finite difference solution
are compared with those of the finite element solut-



ion and with other theoretical solutions whenever
possible. The comparison is held for different cases
of pressure gradient and wall suction or blowing,
but only some examples will be given. In addition,
preliminary results of the optimal control, as in-
vestigated at this stage of work by a finite differ-
ence scheme, are presented.

7.1 Favorable Pressure Gradient Flow with Suction

As indicated by Schlichting (1968), similarity so-—
lutions can be extended to include boundary layer
with wall suction and blowing if the external ve-
locity U, can be described by Ug(x) ~ x™, and when
the suction or blowing velocity is of the form
vo(x) ~ x0.5(m=1) | calculation was carried out

with vo(x) = - CVUUEX0'5(m'1)for a suction case
with C = 1. The input initial velocity profile was

taken as Blasius profile (zero pressure gradient
without suction) and this profile was strained by
the double effect of the imposed pressure gradient,
8 = 0.8 (B is the Falkner-Skan parameter) and wall
suction leading to a similarity solution as presen-
ted in figure 4 for the finite element and finite
difference solutions.

@ Finite Difference Solution
% Finite Element Solution
— Similaritv Solution
——Initial Profile

02 | |\IJI‘/LU‘e

0 0.2 0.4 0.6 0.8 1

Figure 4 Comparaison betwen finite difference
and finite element solutions with similarity one

7.2 Optimal Control Performance

This is a test case for the algorithm of optimal
control used in this work. The desired velocity
profile is the one given in figure 4, Initial suc-
tion velocity was taken to be zero. The iteration
procedure is illustrated on figure 5, where is dis-

1100 v,

n® of iterations
® 0
10

| 25
I

Figure 5 Suction Control

played three suction distributions corresponding to
three different iterations. The numerical values of
the cast function J(v_ ) are is follows : for the
initial zero suction istribution of iteration le-
vel zero, and for a number of iteratiomns equals to
10 then 25, J varies respectively as 31 x 10 %,
2.82 x 10~°, and 2.02 x 1078, This shows the rapid
variation of J towards a minimum during the first
iterations.

8 CONCLUSION

A finite elemént method as well as a finite diffe-
rence one were developed to describe the behaviour
of an incompressible, steady, bidimensional lami-
nar boundary layer flow subjeted to external pres-
sure gradient and wall suction. The finite diffe-
rence method is coupled to an optimal control
technique. Comparaison between the finite diffe-
rence solution and the finite element one and other
theoretical solutions shows a good agreement and
accuracy even for cases of severe adverse pressure
gradient with normal wall suction. Preliminary re-
sults of the optimal control are encouraging, and
convergence is achieved in a rapide manner when the
descent parameter is well estimated.
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