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SUMMARY An exact solution is presented to compute the unsteady drawdown in and around a fully penetrating,

steadily discharging well in a leaky confined aquifer.

and infinite in lateral extent.
considered.
development.
are presented in graphs.

1 INTRODUCTION

The present practice of aquifer evaluation is based
essentially on the application of two unsteagy Y
drawdown equations, viz: the Theis formula / 6

for a non-leaky aquifer and the Hantush- Jacob
formula /" 2_] for a leaky aquifer. Both these
formulae have been developed by treating the well
as a mathematical line-sink. Papadopulos and
Cooper / 5_/ have, by introducing a factor to
define the rate of depletion of water stored in the
well, shown that the line-sink formulae are inade-
quate to predict the drawdown at early periods of
pumping and for large well diameters. The
Papadopulos-Cooper equation is valid for a non-
lTeaky aquifer.

The purpose of this paper is to present a transient
drawdown formula of a general nature for the pro-
blem of a completely penetrating artesian well of
constant discharge. The well is considered to be
of finite diameter. Factors defining the loss of
storage of the well and leakage through the aqui-
tard are included in formulating the problem. The
aquifer is assumed to be isotropic and to extend
laterally to infinity. Water can enter the well
only from the confined aquifer. Water can enter
this aquifer through an aquitard. The motion of
groundwater is assumed to be governed by Jacob's
model of linear leakage [3] .~ Well losses are
ignored.

2 THEORETICAL DEVELOPMENT
2.1 Statement of the Problem

The system of radial flow towards a well fully
penetrating a leaky confined aquifer is shown in

Figure 1. The flow around the well is governed by
the following equations:
§.2i+135 SELEs e (1)
ape ¥ Ef v 3t w
s(r,0) =0 (2)
s(=,t) =0 (3)
and ; pon
27rrw Kb 7E s(r‘w,t) e S(r‘w,t) =

The aquifer is assumed to be homogeneous, isotropic

The effect of storage capacity of the well on the unsteady flow pattern is
The Laplace transformation and the complex inversion theorem are used in the mathematical
The drawdown solution is numerically evaluated using a high-speed computer and the results
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in which s(r,t) = drawdown at radial distance r from
the axis of the well at time t after the commence-
ment of pumping; B=(Kbb'/K')% = a factor of leakage;
v=Kb/S = hydraulic diffusivity of aquifer; b,b' =
thicknesses of aquifer and aquitard respectively;
K,K' = hydraulic conductivities of aquifer and res-
pectively; S = storage coefficient of aquifer; %
radius of well and Q = constant rate at which the
well is pumped.

2.2 Solution to the Problem

Application of the Laplace transformation with res-
pect to time to the problem reduces the partial
differential equation (1) to an ordinary differen-
tial equation which is then solved to satisfy the
transformed boundary conditions. The solution thus
obtained, when inverted for the Laplace transforma-
tion, gives the required drawdown function.

Applying the Laplace transformation with respect to
t to Eq.(1) and making use of Eq.(2) yields the
following modified Bessel equation:

2= B
9—% + %,%_ 425 = 0,r 3 P (5)
dr

in which
q=(5+ Ev})i’
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Figure 3  Typical well performance
curves

T CONCLUSION

In the past, lack of data has prevented engineers
and hydrogeologists engaged in well design from
making comprehensive examinations of the effects
of well and aquifer variables on well performance
in other than simple cases. It is congidered that
the results of this investigation will be useful in
selecting optimal designs for partially screened
wells in unconfined aquifers.
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s(r.p) 26? exp(-pt) s(r,t) dt

Egs. 3 and 4 are similarly transformed to
B S(=,p) =0 (6)
2mr,, Kb E% s(r,sP) - n-ri ps(r, sp) = ‘-% (7)
The general solution to Eq.(5) is
S = C1Io(qr) + CaKo(qr) (8)

in which I, and K, are the zero order modified
Bessel functions of the first and second kinds res-
pectively. Using Egs. (6) and (7) and noting that
Io(®)= », Ko(v)= 0 and d{Ko(qr)}/dr=- gKi(qr), the
values of C; and C, are determined. Thus,

- Q Ko(gr)
PR

= 2
p{2mr, Kb gK (qr,) + 7P Ko (ar,)}

(9)

in which Ky = first order modified Bessel function
of the second kind.

The drawdown distribution s(r,t) in the aquifer is
the inverse Laplace transform of Eq. (9). _Applica-
tion of the complex inversion theorem / 1_/ to Eq.
(9) gives
1 y+iw p
s = Yo Y_{m Q Ko(ur) exp(At)/

A2mkour, Ka(ur,) + 1,7 AKo(ur,)3.dx (10)

which, after rearranging the terms may be written in
the following form:

e
T Ke(ur) exp(it)/
g e

2

v
W2
2Shur,, Kifur,) +— A

)

s
(Q/3nKBY ~ w1

K, (ur,,) . dx (11)

= (A 1,3
where | = (;- + Ez-)
The integrand of Eq. (11% has a pole at A = 0 and a
branch point at A = -v/BZ. The contour given in
Figure 2 (with Ay = v/B2) is used to eValuate the
integral. It can be readily shown that in the Timit
when the radius of the large circle M tends to e and
that of the small circle N tends to zero, the sum of
the Tine integral of Eq. (11) and the integrals
along the branch lines EF and GH must equal the sum
of the residues at the poles of the integrand of
Eq. (11). The residue of this integrand at its only
pole: A = 0 is

2 Ku(l"/B)
(7, 78] Ki(r, /B)

(12)

The integrals along EF and GH are evaluated by
taking

2 ?
i h 1 im
A= U{Fr? * “f} e on EF
W
and A = v{—ﬂE + 1} e '™ on GH
5 20 S :
L% B
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and by using the identities /[ 4_/:

Ko(h &™2) =-1T (35(h) - 1 Yo(h)} ,

Ko(h e 7™ 2)= 12 aq(h) + 1 Yo(n)}

Ki(h e'™2) = =% fay(h) - 1 Yi(h)} and

Ki(h € 72)= = 2 235(h) + 1 Ya(h)} (13)

in which h is a real positive number and Jnand Yy
are n-th order Bessel functions of kinds one and
two respectively. Thus, after introducing the
following non-dimensional ratios:

_ 4 _ 2
§ = rw/B, p = r/rw and T = vt/rw s

the solution is

S e ZKO[pﬁ) 8s ?
TQ7AREY = KT T W o

exp {-t(s%4h2)} h U (h) 4
(82+h%) V(h)

in which

U = Jo(oh) {(6%+h%) Yo(h)-25h Yi(h)}

- Yo (oh) L (62+h%) Jo(n)-25h J1(h)}

and

= ((8%+h2) Jo(h)-2Sh d1(h)} z

=
1

+ {(62+h%) Yo(h)-25h Yy(h)} 2

Eq. (14) is the general equation for drawdown dis-
tribution in an infinite leaky aquifer due to a
fully penetrating well. The unsteady drawdown:
sy(t)=s(ry,t) in the well is obtained by substitu-
ting p=1 in this equation. If the well has a non-
uniform section with radii ry and rc, respectively
within the aquifer and above the top of the aqui-
fer, the drawdown may be obtained b§ multiplying
the factor S in Eq. (14) by (ry/rc)e.

For the case of zero leakage (B== or &§=0), the pre-
ceding technique of contour integration is unsuita-

ble as it will yield a Toop integral {=,0(+)}. It
is necessary to use the following theorem of
Laplace transformation / 1_/:

T exp(-pt)at th s(t')dt' = §/p (15)

in order to invert Eg. (9) (with B==, i.e. q2=p/v)
and obtain the drawdown expression in the form
given by Papadopulos and Cooper / 5_/.

3 NUMERICAL COMPUTATIONS

3.1 To enable practical application of the solu-
tion, Eq. (14) is programmed for the IBM 370/155
digital computer system at the Indian Institute of
Technology, Madras. Results of numerical evalua-
tion are presented in Figures 3 to 6.
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Figure 2 Contour for inversion of Laplace
transform with a branch point on
the negative real axis

Figure 3 provides a comparison between the present
solution and the previously available transient
drawdown formulae for a fully penetrating well.

For computations of water level in the well, the
non-leaky aquifer, large-well solution of
Papadopulos-Cooper (curve BCE) is found to be use-
ful for early periods of pumping, while the leaky
aquifer, line-sink equation of Hantush-Jacob (curve
ACD) is suitable for relatively large values of
time. The present equation (curve BCD) in which the
effects of both well storage and aquitard leakage
are incorporated, is seen to offer the best results
over the entire range of time.
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Figure 3 Time - drawdown variation in
the well for $=8=10-3

Graphs showing variation of water level in the well
with time for various values of leakage ratio & and
storage coefficient S are given in Figures 4 and 5.
Depending on the relative magnitude of the two
factors, 6 and S, drawdown in the well attains a
steady state at a particular value of time. This is
the stage beyond which the entire quantity of water
pumped from the well is derived from leakage. Type
curves on log-Tog scale can be readily constructed
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from these figures for analysis of data from field

pumping tests.

For the case of an infinite non-

leaky aquifer, the radial distribution of drawdown
around the well at different times is shown in

Figure 6.
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4 CONCLUSIONS

Transient drawdown formula for the problem of a
completely penetrating artesian well is developed.
The transient equation in which the effects of both
well storage and aquitard leakage are incorporated,
is seen to offer the best results over the entire
range of time.
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