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SUMMARY

Measurements of higher-order structure functions in high Reynolds number
turbulence exhibit a behavior consistent with that predicted by simple dimensional
theories, but the measured higher-order spectra have been found to exhibit an
apparent paradoxical invariance of form that is contrary to the predictions of
corresponding dimensional theories, In the present work, theoretical calcula-
tions based on a Gaussian model for the velocity fluctuations furnish predictions
for spectra of arbitrary order that are in very good agreement, both in func-
tional form and in absolute value, with measurements obtained in the atmos-
pheric marine boundary layer., The present experiments and analysis suggest
that the inertial subrange dimensional arguments of Kolmogorov and Obukhov
apparently may be applied only to the first order (energy) spectrum, and that
trends observed in earlier measurements of higher-order spectra in the atmos-
pheric boundary layer and stratosphere correctly anticipated the invariance of
the spectral form in the inertial subrange. It remains to explain why the dimen-
sional analysis arguments of the Kolmogorov theory (that lead to the k-5/3
behavior of the inertial subrange energy spectrum) are so decidedly unsuccessful
when applied to higher-order spectra,

C. W. Van Atta, University of California, San Diego
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I, Introduction

Interest in higher-order statistical properties of turbulent flows is generally stimulated by
both fundamental interest in the closure problems of statistical formulations and in the subse-
quent application of closure schemes to numerical modelling of turbulent flows of practical inter-
est in engineering, atmospheric sciences, etc, Here, we discuss some measurements related
to the more fundamental and simpler aspects of high Reynolds number turbulence, in particular
the behavior of statistical properties of the velocity field in the range of scales known as the

AT S R o R

"inertial subrange.' For this idealized situation the theory and interpretation of results is rela-
tively simple, and both can be carried out with some success to fairly high order.
Following the arguments of Kolmogorov and Obukhov (1), the inertial range of length

scales r, defined by N << r << L, where 1 = (\)3/<€>)1/4 is the viscous scale and L the
external scale, all correlations and structure functions may depend only upon r and (e), the
mean rate of dissipation of kinetic energy. The usual assumption is that all spectral properties N
may depend only upon the wavenumber k and (e). Extending (2) Kolmogorov's argument to
structure functions of arbitrarily high order, and working only with a single (longitudinal) com-
ponent of velocity and separation r for clarity, we have by dimensional analysis

C(abe +1) - ube)™) = C_(Ce) 2™/ 1)

A corresponding result has been given by Dutton and Deaven (3) for the mth order spectrum
qu , defined by

f ¢ () dk = (@™ - Ca™FY = (0™ (™2 (2)
o

2 2
so that ¢,,dk is the spectral contribution to (u m> - {u™“ from the wavenumber interval k
to k + dk,

Again, by dimensional analysis

(g y2m/3 | -(2m+3)/3

) =a_ (3)

For m=1, equation (3) reduces to the classical result that the energy or power spectrum of the
velocity fluctuations is proportional to k-5/3 in the inertial interval,

Stimulated by the comments of Landau and Lifschitz (4), there has been considerable spec-
ulation as to whether results like equations (1) and (2) should be modified because of a possible
dependence on the form of the probability density of e, and not just on its mean value, {¢) .
Applying the modifications formulated by Kolmogorov (5), Obukhov (6), and Yaglom (7), which
incorporate a lognormal distribution of ¢ (averaged over a region of characteristic dimension r)

with variance O given by Oln o T A+ yln L/r, leads to the following modified form of equa-
tions (1) and (3) .
Gha-a' Py = B ((e) 2?2 iy nin- 2108 (4)
—~ - 3 "I"‘ - -
i =g <e)2m/3k (2m+3)/ (Z2m- 3)um/9 5)

m m

These conflicting predictions for the original and modified theories are compared in figure 1 for
u=1/2 (a nominal average of available data, e.g., see (2)). We see that while the dependence
of the moments or spectra on separation distance or wavenumber, respectively, is practically
unaffected for commonly measured second or third-order quantities, the differences increase
rapidly for higher-orders, and the predictions diverge rapidly for larger values of n or m,
Because of this sharp divergence, one immediately questions the validity of the modified
theories, whose behavior is somewhat strange, producing in both cases a relatively complex
dependence on n or m, in which the power of r or k actually changes sign for sufficiently
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large n or m., That is, for sufficiently high
order, the modified Kolmogorov theory pre-
dicts that structure functions should decrease
with increasing r, and spectra increase with
increasing k, a behavior outside our experi-
mental experience up to the present time. For
structure functions, the data of Van Atta and
Chen (2) and Van Atta and Park (8) summarized
in figure 1 support the modified theory up to
about eighth order, but are inconclusive for
higher order. Measurements of higher-order
structure functions are difficult because of the
requirements of large dynamic range and very
long samples of data required to adequately
resolve the tails of the probability densities
that become crucial for the higher-order mo-
ments of the velocity differences, Higher
order spectra, as defined here, do not involve
measurement difficulties of this type, and good
statistical convergence can be obtained in the
frequency range of interest, without special
efforts to achieve a large dynamic range of
recording or very long samples of data. How-
ever, except for second-order structure func-
tions and first-order spectra (n = m + 1 = 2),
there is no apparent direct mathematical cor-
respondence between the higher order correla-
tions and spectra of the turbulent field, The

i 1 | |
8 10 12 14

.12 i 1 |
4

6 16

n, m=+|

Figure 1. Power of r or k in inertial sub-
) range variation of nth order structure
function or mth order spectrum, respec-

tively. Structure functions: s
Kolmogorov (1962); — — — , Kolmogorov
(1941), Spectra: — - —, Dutton and

Deaven extension of Kolmogorov (1941);
, Modification of Dutton and
o; Van Atta

Deaven for lognormal ple).
and Park (8).

closure problem for the Navier-Stokes equa-
tions can be written in a form involving higher-
order structure functions (1), but it probably
cannot be expressed in terms of the higher-
order spectra as defined by equation (5). Hence,
in testing either eqs. (4) or (5) experimentally,
we are looking at two very different aspects of
the problem. To avoid confusion, it should be
mentioned that the Fourier transformed Navier-
Stokes equations can be expressed in terms of

another variety of higher-order spectra involv-

ing multiple wavenumbers, This analytical approach has been discussed for third-order quanti-
ties (bispectra) by Yeh and Van Atta (9).
II, Measurements of Higher-order Spectra

Recently, Dutton and Deaven (2) computed the spectra defined in eq. (2) up to fourth order
for all three velocity components from samples of atmospheric turbulence obtained at four differ-
ent altitudes with instrumented aircraft. As illustrated in figure 2, the behavior described by
eqs, (3) or (5) was not observed in any of their data (actually, they had only equation (3) available
for comparison)., Rather than increasing in slope with increasing order, in the inertial subrange
the log-log spectral plots either retained an approximately -5/3 power law slope or decreased in
slope. Dutton and Deaven offered no physical or analytical explanation for the observed behavior,
but speculated that "it is clear that the -5/3 power law generally observed in atmospheric turbu-
lence in the range 100 to 1000 m does not indicate an inertial range in which spectral properties
depend only on {e) and k," It is not at all obvious that such a strong sweeping conclusion as
this is justified on the strength of the available data and present ideas on turbulence. There is
strong experimental evidence (1, 2) for the validity of Kolmogorov's -5/3 (spectral), +2/3 (second-
order structure function), and +1 (third-order structure function) "laws, ' and detailed theoretical
calculations that support the dimensional results for spectra and second-order structure functions
are available (10). One objective of the present work is to attempt to develop alternate analytical
interpretations of the experimental results which do not require the abandonment of the original
energy cascade idea of Richardson (11) and the consequences put forward originally by Kolmogorov
and Obukhov in 1941 and in modified form in 1962,
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Figure 2, The spectra of the first, second, third and fourth powers of the Dutton and
Deaven LO-LOCAT 750 ft data, Note that the function k¢ (k) is scaled logarithmi-
cally on the vertical axis and that f (or k) is scaled logarithmically on the hori-
zontal axis, with the integers denoting powers of 10, The dashed line gives the
-2/3 slope that illustrates a -5/3 power law on a plot with these coordinates.

Wi = e s iy Vi

The Dutton and Deaven spectra, which cover a large frequency range including quite low
frequencies, do not resolve the inertial subrange sufficiently well to provide convincing evidence
for the present comparison, To obtain suitable data, the present experimental results were
calculated using data obtained in the atmospheric boundary layer over the ocean. These hot-
wire data (2,8) were known to exhibit an extensive inertial subrange behavior in the energy
spectra and second and third-order structure functions, and the data used here are exactly the
same data used to calculate the structure functions reported in (2) and (8). The power spectra
were first recomputed emphasizing frequencies in the inertial subrange, and then the higher
order spectra were computed with the same resolution. These results showed that all the com-
puted higher-order spectra preserve the high-frequency end of the -5/3 behavior usually asso-
ciated with an inertial subrange, and that the measured spectra deviate from this simple be-
havior at a lower frequency bound which increases as m increases. This data confirmed the
suggestion from the Dutton and Deaven data that the form of the spectra in this range might be
invariant, and motivated a search for a theoretical explanation.

III, Gaussian Theory for Higher-order Spectra

In general, there is no close correspondence between the probability density and spectrum
of a random variable, Exact mathematical relations are apparently available only for a Gaus-
sian process.,

If u(t) is assumed to be Gaussianly distributed, then the higher order spectra defined in
eq, (2) can all be calculated in theory from a knowledge of the first-order spectrum gbl alone,
The probability density of the velocity fluctuations in atmospheric turbulence is only approxi-
mately Gaussian, as illustrated in figure 3 for the present data obtained in the atmospheric
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boundary layer over the open ocean, How-
ever, although the measured probability densi-
o ties are skewed and deviate from the Gaussian
04 e for small values of u, for intermediate and

/ 0\ larger values of u the densities are well

o o approximated by a Gaussian distribution. The

/ \ question thus naturally arises as to whether

o]

o

9o or not the Gaussian assumption for the proba-
5 bility density of wu(t) will produce realistic
predictions for higher-order spectra of uft),
o o and how these would compare with the appar-
o plu) \0 ent paradoxical disagreement between the
\ measured spectra and those predicted by the
G Ci original and extended Kolmogorov arguments.,
ci For a Gaussian random process, the
b second order spectrum is related to the first
° \ order (energy or power) spectrum by the rela-
/é 0\ tion given by Rice (12)
ol 3

J \ 9, (6) = / ¢,(s) ¢ (E-5)ds  (6)

o] -0

-3 -2 -1 0 ) 2 3 i,e,, the second order spectrum is equal to
the convolution of the first order spectrum
u/e with itself, In a general case, the convolu-
tion may be performed directly on the meas-
ured values of ¢; , but for spectra with
Figure 3. Probability density of u(t) meas- extensive inertial subrange behavior the
ured in atmospheric boundary layer over simple form of ;bl allows one to use simple
open ocean, Height=3m, U=28.4 m/sec, analytical expressions as approximating
Dashed curve is Gaussian distribution. functions, For atmospheric boundary layer
turbulence, a suitable form is given by

8, 6)=52 2+ 0%/ (7)

The values of b and )\ are easily determined by fitting two of the measured spectra in
the inertial subrange, For the present atmospheric data obtained in the atmospheric boundary
layer over the ocean, the values of b and )\ determined for the raw (uncalibrated) spectra
shown in figure 4 were b = 6498 and ) = 3, 32. For purposes of interpretation, we assume that
k and f are related according to k = 2mf/U by Taylor's "frozen turbulence'' hypothesis,
where k is radian wavenumber, f is frequency in Hertz, and U is the mean velocity. Using
eq. (7) the convolution integral of eq. (6) was performed numerically. The result fits the exper-
imental data in figure 4 very closely. @, exhibits an extensive region where ¢; ~ £-5/3 cor-
responding to that for ¢; ~ f'5/3 , and no ¢ ~ - 7/3 region (the behavior predicted by eq. (3))
is observed, Note that the numerical values of the spectra increase rapidly with increasing m,
and the absolute magnitude of the second order spectrum is 2.6 X 10° larger than that of the
second order spectrum.

All the higher-order spectra could be numerically computed from a knowledge of ¢; alone,
but the task becomes increasingly more involved as the order increases, This result has been
of considerable use in the study of noise in communication systems, and discussions can be found
in Rice (12) and in Davenport and Root (13). In the present case, it is not necessary to numeri-
cally perform the m-fold convolutions on the data, as an analytical asymptotic expression for
¢, for large frequency in the range of interest can be found by employing (7) and the formalism
for computing higher-order spectra developed by Bedrosian and Rice (14) and Rice (15) for the
more general problem of the output properties of Volterra systems driven by Gaussian inputs,



322

1L ..|;.|\.1

2x10-1 100 10! 102 103 2xi0”!  10° 0! 102 103

f, Hz f, Hz

Figure 4, ¢; and ¢, measured in atmospheric boundary layer over open ocean,

Dasheéd line has -5/3 slope. ¢, data for larger m are similar,

Our problem corresponds to the simplest possible memoryless case. The asymptotic result,
which requires a considerable amount of algebra, is:

2751

5/3(4.2b A ) m2[1-3'5"'(2m-—3)] (8)

¢ () ~ (D.C. spike if m is even) + bF

where the bracket [ ] is replaced by 1 if m=1, and F = Af, where f is the frequency in
Hertz, The leading term in the asymptotic expansion for large F 1is thus always proportional
to £'5/3, independent of the order m. This agrees with the experimentally observed behavior.
For b = 6498 and ) = 3,32, the magnitudes of the spectra predicted from eq. (8) are in excel-
lent agreement for all the measured spectra up to the highest order so far computed (9th), The
predictions of eq. (8) also appear to be consistent with the data of Dutton and Deaven; however,
at the time of this writing a full comparison has yet to be completed. It appears that the Gaus-
sian model for the spectrum in the inertial subrange is capable of predicting (both qualitatively
and quantitatively) all the observed features of the higher-order spectra in the inertial sub-
range,
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IV, Discussion and Conclusions

The present experimental results and theoretical analysis demonstrate that the invariance
of the form of the higher order spectra of velocity fluctuations in high Reynolds number turbu-
lence can be explained on the basis of a Gaussian approximation for the velocity fluctuations.
The close agreement of the present analysis and the experimental results is strong evidence in
favor of the validity of the Gaussian approximation for representing spectral properties, The
measured and predicted behavior is in sharp conflict with the predictions for higher-order
spectra of the dimensional similarity theories, but in basic agreement with the trend of earlier
experimental data obtained by Dutton and Deaven. These results raise a fundamental question:
Why are the dimensional analysis arguments of the Kolmogorov theory (that lead to the k-5/3
behavior of the inertial subrange energy spectrum) so spectacularly unsuccessful when applied
to higher-order spectra? Hopefully, a way can be found to reconcile the present Gaussian
" theory, which represents the data well,and some alternate extension for general ¢p, of the con-
cept of an energy cascade in the inertial subrange, as successfully applied to the case of ¢; by
earlier workers.
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