572

FIFTH AUSTRALASIAN CONFERENCE
on

HYDRAULICS AND FLUID MECHANICS
at

University of Canterbury, Christchurch, New Zealand
1974 December 9 to December 13

SOLUTION OF FLUID DYNAMIC PROBLEMS BY FINITE ELEMENTS

by

G.P. Steven

SUMMARY

The dynamical motion of fluid within a container is modelled by a series
of discrete or finite elements. Natural frequencies of oscillations of the
system can be obtained by assembling the mass and stiffness characteristics
of each element into global matrices and solving the resulting eigenvalue
equation. Effects such as surface tension, density variation and non rigid
containers with an incompressible fluid have been investigated so far and
some interesting results emerge.
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NOMENCLATURE
{q} = wvector of nodal displacements. ¥ = surface tension coefficient.
L = Lagrangian, kinetic minus potential V = volume.
energy. .

F = dissipation function. S;Ps:rtgiiid

Q = external forcing function. Y = tenk '

[M] = mass matrix. i reduéed

{H] = sloshing matrix. 5w Mther'reduced
[3] = stiffness matrix. i3 = seaal locations.
[F] = surface tension matrix. g :
[K] = local stiffness matrix. Superseripts

[T] = incompressibility influence matrix. e = element.

[§] = zero frequency influence matrix. ' = global.

p = density. T = transpose.

g = gravity.

1. INTRODUCTION

Some recent publications (1) (2) have proposed an outline of a technique for the
vibration analysis of fluids sloshing in tanks. Problems involving the harmonic
oscillation of fluids occur in many areas, tidal motion, dynamic mixing of fluids in
distilletion processes, bulk transportation of fluids, liquid fuel in rockets are but a
few. Generally the geometry of these situations excludes exact analysis and thus the
use of a finite element technique would appear to be particularly appropriate.

In this work Lagrange's equation is used as a basis to obtain a standard vibration
equation from which eigenvaelues and vectors, pertaining to various natural modes of
surface motion, can be extracted. In this vibration equation the mass matrix relates to
a series of assembled finite elements which have their mass lumped at nodes corresponding
to the degrees of freedom of the element. If the walls of the tank are elastic then a
wall node would have its mass altered to accommodate this. The "stiffness” matrix is
composed of several effects, namely; changes in surface level are given in a sloshing
matrix, surface tension in a surface temnsion matrix, strain energy in fluid in a fluid
stiffness matrix and of the tank in a tank stiffness matrix.

Results of sloshing frequencies are presented and commented upon for several
combinations of the above mentioned quantities, others still require further study.

2. THEORY AND FINITE ELEMENT MODEL

The following development of the technique is expressed in the usual finite element
notation and presumes use of assumed displacement fields. Lagrange's equation is used as
& basis for the derivation of the vibration egquation.

a [BL} 8L, OF

at \9a3) ~ 9a; = daqy

In order to determine natural frequencies of oscillation F and Q; may be set to zero.
L can be defined for the whole region or since it is a scalar quantity for a finite
element of a region.

= Q‘i 1

L = kinetic energy - potentiel energy of surface motion - potential energy
duet® surface tension - strain energy of fluid - strain energy of container.

When I is substituted into (1) and equation then solved, a stendard vibration equation
is evolved.

[ + ) ]4G)} + (1 + (F1 + K)o+ K1 ]{q} = O, 2a
i.e. m'i{gr + s'1da} = 0O 2b

The various metrices in (2a) are assembled by the direct stiffness method of wtructural
analysis from the element component matrices.
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Only the surface tension matrix [F]- has a different derivation as will be shown later.

With the absence of any viscous dissipation or structural demping the statement of
the problem as in equation (2) corresponds to the Principle of Virtual work where the
assumed displacement field {ql} is essentially a set of compatible virtual displacements.
Thus it is seen that equation (2) represents an extreamum principle and the theory of
the finite element method in general (3) indicates that in the limiting case of an
infinite number of elements, convergence to an 'exact' solution is ensured. It is now
in order to proceed to the presentation of the finite or discrete element used and the
derivation of the elemental properties.

2.1 THE FINITE ELEMENT. As the technique presented herein is still at a partially
embryonic stage it is expedient to use a simple element in order to assess the potential

of the scheme. For this reason the analysis is restricted to two dimensions with unit
thickness and the element used is a square of side ¢, figure la.
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A) The finite element. B) 3 x 3 grid in tank.

Figure 1

At the mid point of each side is a node with a single degree of freedom at which the
effective mass corresponding to that degree of freedom is lumped.

2.2  MASS MATRIX. Since there is only a single d.o.f. associated with each node then
vertical motion is reflected by nodes 1 and 3, and horizontal motion by nodes 2 and L.

Thus the effective nodal mass from a vibrating point of view is pc?/2. There is no cross
coupling between masses and thus,

: 1 0 0 O
e _ pc O 1 O 9
M = 2 0 01 0 4
0 0 0 1 s

For the container the mass of any wall nodes can be added to by an amount equal to
the mass per unit length of the wall times e.

2.3 SLOSHING MATRIX. In a U tube manometer the change in potential is the weight
per unit length times the change in height and is independent of the shape of the tube.
For unit displacement the force required is the weight per unit length. Consequently
in this model, the stiffness associated with surface motion in an element is merely the
weight per unit length pge, and it only affects surface nodes.

H1® = pge
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2.4 SURFACE TENSION MATRIX. Surface tension is defined as the force per unit length
on the surface. If the surface is disturbed then surface tension produces restoring
forces. In this elemental approach if one surface node is given unit displacement then
its neighbouring undisturbed elements experience forces equal and opposite. Therefore
it is impossible to define an element surface tension metrix uniquely and two elements,
at least, have to be lumped together. In reality the virtusl displacements are small
and simple statics may be used to show that the surface tension matrix linking nodes

i and Jj in figure 1b can be presented as,

e _ X o e

[F]ij c [rl 1] . 6

and if all three surface nodes are assembled then the total surface tension matrix for
this prcblem would be,

1 .<1Y¥-0
[F] = § e 2 -1 T
6 =3 4l

2.5 FLUID STIFFNESS MATRIX. Thia corresponds to the structural stiffness matrix
where the coefficient KS, is the force at i required to give unit displacement at |,

i3
and can be obtained from the unit displacement theorem of structural analysis.
e T
2, = Iv{ei} {o,} av. 8

In this {ei} is a vector of strains due to unit displacement at i and {GJ} a

vector of stresses due to unit displacement at j. In the element model employed herein
the volumetric strain-displacement relationship is,

{e} = ){ql = %— [q: + @2 - a3 - Qul, 9
where |[D] = -% [L 1 -1 =-1] is the strain - displecement influence matrix.
{o} = [Bl{e}, 10

where [B] is the elasticity matrix and is in fact the bulk modulus for the fluid, call
this B.

Introducing these concepts into (8) and since neither {si} or {UJ} involve field

varisbles because of the simple displacement field, the fluid element stiffness is
found to be,

e
5

u

T
K] f (D1 B[D] 4v,
v
s A N (O
Y F Al T
Bid -1 'T 1% 1l
I -4 1. 11 .

2.6 TANK STIFFNESS MATRIX. This will depend totally upon the type of structure used
end will pertain only to wall nodes. The unit displacement theorem may again be used

to determine the coefficients and these can be assembled into the global stiffness matrix
in the sppropriate locations.

3. EFFECT OF INCOMPRESSIBILITY AND ZERO FREQUENCY MODES

For an element the incompressibility constraint condition can be expressed, from
equation (9), as,

1
{e} = Sl +a-q3-al = O
Each element contributes such a condition and these can be used to reduce the number of

degrees of freedom from {q} to {qr} via en incompressibility constraint Trfluence
matrix [T] where
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{a} = (7i{q,} . 12

T
Substitute for {q} in equation {2b) and premultiply by [T]  and thereby obtain a
reduced form of the vibration equation.

M '1{g ) + [Sr']fqr} = 0, 13
shiers M = e
(8,'1 = (m7(s'1m)

The matrix [Sr'] is generally highly singular due to the absence of stiffness

associated with many nodes when the fluid is incompressible. This gsignifies that many
modes of vibration have zero sloshing frequency and these modes mgy be eliminated before
the non zero frequencies are evaluated.

Let {gr} = {qz= qs} = [¢l{qz} , where {qz} are the d.o.f. with zero sloshing

frequency and [¢] is an influence matrix for zero frequency modes. Substitute for
{qr} in equation (13).
1L {a, 0] + s, 1[1e1{q 1] = o.
Thus if {4;} = O then (S '1[¢] = O = (¢1T[sr'1. Multiply equation (13) by
(¢17.
T i e T ' _
(617 M, l{qr} + 917 (s, }{qr} = 0,

i.e. (017, ' 148} = o.

Integrate twice yielding [¢]T[Mr']{qr} = Et + F, where E must be zero otherwise
{qr} would increase linearly with time and F may be taken zero as a suitable
arbitrary origin for {qr}.

Let 01'm" = @ | R,
thus [P : R]{qz : qs} = 0,
and so {q,} = -[P17*[R] {qs} s
thus finally i
' -[P1 [R]
fgt = {g ') = [ =~ ol {og} = e} 1k

Substitute for {qr} from equation (14) into equation (13) and premultiply by [D]T.

[Ms']{q,s}+ [S'S'J{qs} = 0, 15

T
where [MS'] [D] [Mr'][D]

T
[8,') = (D1°(s,'1(D] .

This may now be reduced to an eigenvalue equation as follows. At a resonant frequency
the motion will be harmonic,

{a .} = {qg,)sin ut, .

and so
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[w?me ' + 18,']] {ased = oO. 16

In this [Ms‘] is a symmetric matrix and can be reduced to [ MBI] = [L][L]T,

where [L] is an upper triangular matrix. Substitute for [ME‘] and divide
throughout by [Ll

-1 ' T =
DL] (s,'] -mzmljh%,} = 0

i.e. [1 - o?i1i]{ag,} = © 17

=4 . =T
where w1 = [L] [Ss 1[L]

fag,} = 1T {agy} -

Any standard eigenvalue technique can be used to evaluate the sloshing frequencies
since [W] 1is a symmetric matrix.

L, SOME ILLUSTRATIVE RESULTS

4.1 FLUID INCOMPRESSIBLE, TANK RIGID, NO SURFACE TENSION. For this case it is
possible to compare the non-zero sloshing frequencies with analytical values derived
by Lamb (4), given by,

w = [%thxh F%%]%, 18

where ) is the wavelength of the surface motion (A = 2b for first natural frequency,
A =1b for second, ete.) and h and b are the height and width of the tank. For
various grid sizes and tank aspect ratios the results are presented in the table below.

GRID SIZE wy / (.c.e;/b);E wz / (e:/b);ﬁ
DIVISIONS | DIVISIONS
HIGH LONG COMPUTED | ANATYSIS | 4 ERROR || COMPUTED | ANALYSIS | % ERROR
3 3 1.6329 1.7691 7.7 1.9817 2.5066 20.9
L L 1.6866 1.7691 4.6 2.1k490 2.5066 1h.2
5 5 1.7143 1.7691 3.1 2.2510 2.5066 10.2
6 6 1.7301 1.7691 2.2 2,3165 2.5066 7.6
T T 1.7401 1.7691 1.6 2.3605 2.5066 5.8
6 I 1.6906 1.7720 4.6 2.1491 2.5066 14.2
i 6 1.7053 1.7566 2.9 2.3155 2.5064 Tub
N 8 1.6733 1.697h gy 2.3853 2.5019 4.6

High errors at small numbers of elements and also at higher modes than the first are
expected due to the simplicity and smell number of elements being unable to represent
the displacements associated with the modes to any degree of accuracy. At larger grids
the relative errors indicate that the limiting case of an infinite number should give
the exact solution. It is considered unnecessary to investigate larger and larger grids.

By a simple alteration to the input data for the computer programme which solves
the sloshing model, relative densities between horizontal layers on the grid can be
imposed. Using the 6 X 6 grid, several permutations of density variation were studied
and the following comments mey be made from the results.

With a density ratio of two starting at the bottom layer and moving upwards there
was no appreciable change in the sloshing frequency until the ratio existed between the

top layer and the rest. Here the reduction in w2 was 20% and in w2? , 8%.
However the trend of the results seems to indicate that as the lower density region
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occupies a smaller and smaller fraction of the total depth, then there would be a
significant reduction in frequency and could therefore account for the oil on water
phenomenon.

Taking the top layer (1/6"™ of total) at unit density and the remainder at an
increasingly higher density gives the result that as the density ratio increases the
sloshing frequencies of surface motion decay exponentially to values which would have
been obtained had the bottom high density region, in fact, been solid.

4.2 SURFACE TENSION INCLUDED. With the 3 X 3 grid several solutions were obtained
at various values of the surface tension coefficient and the following results emerged.

1.6329[% [1 + p-i%,] ]’5

1.9817[% {1 + i—&%] ];, :

wy

(]

w2

=7
However x/pgb2 is, with water under air and b equal to one meter, equal to 73 X 10 ,
and it would be an exceptional physical situation whereby the surface tension would
affect the sloshing frequency.

4.3  FLUID INCOMPRESSIBLE, TANK ELASTIC, NO SURFACE TENSION. 1In order to have a
reasonably simple tank stiffness matrix the walls of the tank will be considered to be
cantilevered from a rigid base. Thus the unit displacement theorem can again be used to
give the coefficients in the stiffness matrix as,

_ 9ET _ i |
Kigt © a7 [ 8, — ey +a,) +3 19
where i 2j, a, = ¢(i - %), E = Young's modulus and I = second moment of area per unit

width. i

Consider the simple 2 X 2 grid with ten degrees of freedom, figure 2a. The
stiffness matrices for both walls would be,

gr |24 32/9

K]l, = =%
© e s 89 o,
and the mass matrix for each wall would be,

- 1 0
Mg = p1-.‘”“[0 1],

where t is the thickness of the wall. These can be assembled into the global mass and
stiffness matrices for the whole system at the appropriate locations. Using the
incompressibility constraint conditions to eliminate the degrees of freedom associated
with nodes 3,4,7 and 8, the reduced mass and stiffness matrices associated with nodes
1,2,5,6,9 and 10 respectively, are as follows.

( ¥ 1 =3 <1 O & 10000 O
, 1 2 -1 -1 0 O 01000 0
c =3 =1 8 2 =3 =i 0000 O0O
" = EE“ 23 o1 @ § =1 «i] W00 000000
0 0 -3 -1 W 1 0 0 0 0 1 0
0 0 -1 -1 1 2 0000 0 1
4 1 -1 -1 @ @ 1 427 0 0 0 o
1 1 -1 -1 0 o Yar 1/2T 0 0 0O 0
B.'] = -1 -1 2 2 -1 -1|  2kEr 0 ©o 0 0 0 0
r pee = o]l B 2 =1 =1 c3 0 6 0 0 0 0
0 0 -1 -1 1 1 0 0 0 0 177h/j27
6 O =1 =1 1 1 0 0 0 0 W27 1/27
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Figure 2A) 2 x 2 grid in elastic tank. Figure 2B) t e

If the fluid is taken as water and the tank of steel of overall dimensions 1 X 1
meter then a series of eigenvalues can be extracted from the above matrices for a range
of values of wall thickness. When only the first eigenvalue is plotted against wall
thickness the curve shown in figure 2b is obtained. Also plotted on this graph is the
first natural frequency of the fluid alone and the first natural frequency of the wall
alone. These latter two quantities are based on the modelled form of the system not
the exact form.

From figure 2b it is seen that the first natural frequency of the combined system
follows that of either the wall or the fluid, whichever is the lowest. Thus the mode
of the lowest frequency of the combined system changes from a wall mode with no sloshing
up to the tuned freguemcy (w, = w ) and thereafter continues as a sloshing mode (no wall
motion). Clearly in the actudl syStem other modal interactions occur but the simplicity
of the model used herein excludes their detection and further study is required.

2. CONCLUSION

The results obtained so far, indicate that the modelling of a region of fluid in a
container subject to dynamic motion of itself and its boundaries and be effectively
achieved by the use of a discrete element technique. Clearly further work is required
to generalise the element used and the geometry of the regions and the containers. Once
this has been done and the constraint of incompressibility removed the solution technique,
though now much more complex, can be applied to almost any problem involving dynamic
oscillation of fluids.

REFERENCES

(1) HUNT, D.A. "Discrete Element Idealization of an Incompressible Liquid
for Vibration Analysis", AIAA Jol., Vol 8, No 6, June 1970,
pp 1001-100k.

(2) COOK, R.D. Comment on above reference (1),
AIAA Jol., Vol 11, No 5, May 1973, pp T66-T6T.

(3) ZIENKIEWICZ, O.C. "The Finite Element Method in Engineering Science",

McGraw-Hill 19TL.

(L) LAMB, H. "Hydrodynamics" Dover 1932.



