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SUMMARY

Many experimenters attempt to function invert (linearise) the hot-~wire signal
to improve the technicue of estimating the slope of the static calibration
curve, needed to determine turbulence sensitivity. This paper deals with the
problems and pitfalls that accompany such processes generally and in hot-wire
anemometry particularly when using an electronic lineariser.
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X INTRODUCTION

Many practical transducers have non-linear performance characteristics. That is to say
+he functional relation which exists between the input and output is not linear. Specifically
for hot-wire anemometers the approximate relation widely used is of the King's law form

_ n
Eo A + BU ’ (1)

where E, is a voltage output, U is a velocity, A, B, n are supposedly constant.

Due to the highly non-linear nature of equation 1 there are strong incentives for function
inverting it. Firstly there is the need to accurately estimate the local slope to determine
turbulence sensitivity. Secondly at high turbulence levels errors of measurement due to
instrument non-linearity become significant.

In principle function inversion is a reasonable and logical technique for overcoming both
problems. With experimental scatter present, it is considerably more precise and less diffi-
cult to fit a straight line to the data than a curved one. Conseguently the local slope of the
. calibration curve could be estimated with greater precision from such a straight line than
from the curved non-linear response curve. The second problem can be eliminated by "unbending"
the response curve provided the unbending process (function inversion) can be achieved with
some precision.

In practice however there are some fundamental objections to function inversion when the
function to be inverted is not known precisely as is the case with the hot-wire anemometer.
Equation 1 is an empirical relation derived from empirical heat transfer laws and furthermore
B and n are not constants but complicated functions of velocity U (Bruun (1) ).

2. FUNCTION INVERSION

In order to appreciate the very real difficulties involved in the inversion of equation 1,
it is appropriate to define the problem. Figure 1 shows the block diagram of the process
involved. At this stage it is not important to state whether the function is inverted by a
process such as plotting of the data on appropriately non-linear axes, or by an electronic
analogue lineariser. Whichever the case the result will have some "wiggles" as shown on
figure 2. These wiggles are a result of imprecise function fitting of the original response
equation f£ with g . Experimental simplicity demands amplitude matching of the two functions
in-some range. At each matching point the two functions will cross, resulting in almost im-
perceptible wiggles on an amplitude plot. However these wiggles can cause significant errors
in local derivative estimation, particularly when used at small turbulence levels. At high
turbulence levels the global value of the local gradient will not be greatly in error.

3. ANALYSIS OF ERROR

The standard formula for numerical differentiation of a function £(x) known only by tab-
ular values at intervals of Ay is given by

af/ax|x=x_ = 1/28x[ £(x, + 8x) = £(x, = Mx) 1

me
- x)?2 /3t 0] (2)
"
where £ denotes the maximum value of d3f/dx3 in the range xg-Ax <x<x_+Ax (2) . This
equation rests on the assumption that f(x) is continuous and differential in the range to the
third differential at least.

When using numerical techniques for differentiating experimental data two types of errors
must be considered

(a) Truncation errors
In the above equation this is represented by the last term
2 "
ET(f) = - (g—}f):- £ (%)

It is clear that for (f) a second order function the value of ET will be zero, but not for
higher order functions e
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(b) Rounding errors.

To illustrate, consider a random error in £, denoted £ then the error in the differential
formula, equation 2 ,may be written as

df/dx =(€, + & £, - £.; % E_ £,) / 2bx

where f, = f(xgtAx) and £_
is given by

g = f(xo-Ax) . Consequently the worst limit error due to rounding

1
ER = ~/2Mx («‘;1 £, + &, £))
It is evident that as the interval Ax is reduced so the rounding error ER will increase without
limit.

In applying numerical or graphical differentiation methods, the user must select the
differentiation interval so that both sources of error are minimised.

It now remains to evaluate such errors when numerical or graphical methods are applied to
an approximately inverted function. The appropriate simple inverter for equation 1 is given by

g(f) = (£2 - )" (3)

and the second order gradient estimator to g is given by

dg/dx

£= £y

2 _ m 9 . m
[+ ep%2-a] [ e+ &y £.02 - 8] " /28x (4)
2
In most practical situations £ <A, £<<l1 and equation 4 may be reduced to an error term

in dg/dx given by

2m =
erg = 4mf  E[1- Be?] O (5)

Equation 5 rests on the assumption; that &, = O[E 1] and second order terms in £ may
be neglected, resulting in A/fz = 0[ A/fz ] Since we are only concerned with an estimate
1 .
=k

of the error all these assumptions are appropriaté.

From equation 7 the amplificatiaon of rounding errors by a function inversion process is
given by

p = Eba/bg m [ 1 fo/f
T EAE/AE I-8/8¢ “¥- £ /L,

(5a)

where the term in square brackets is of order 1 and using some practical values for the various
terms results inm = 2, A/f2 = 0.5 and T =4 . The implication is, that the function
inversion process is an error amplifier.

When an electronic inverter is used the output of the anemometer is direct coupled to the
inverter. Under these conditions the only source of random error input to the inverter is
that due to minor changes in the performance of components in the hot-wire system. These
changes can occur due to changes in the dynamic operating conditions of the system. Although
such changes may be quite small in the dynamic response of the anemometer, when amplified by
the inverter they may be guite significant. 1In this context it is worth noting that equation
5a was deriyed using a binomial expansion on (l—A/fz) k-1 | This expansion will only hold as
long as A/f” can approach unity to within any desired degree of accuracy without contravening
the requirements of the binomial expansion. Under these conditions T can increase without
limit.

So far the analysis has been restricted to rounding errors. In order to investigate
the effect of truncation errors the degree of approximation involved in the inversion process
must be known. These errors may be predicted for a practical inverter (DISA. 55-D-10 linear-
iser) and an ideal hot-wire as proposed by Davies and Bruun (3). Davies and Bruun have cali-
brated an extensive set of similar tungsten wires with a constant temperature hot-wire anemo-
meter built at Southampton. The results of their calibration provide a "universal" calibration



for wires of similar geometry with an adjustable constant requiring only a one point calibration

in practice.

The Davies and Bruun tabulation was curve-fitted and the following static response equation

was found.

E2
o]
where
Y
and
R
Equation

the DISA. 55-D-10 lineariser.
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Once the constant has been determined the calibration may be scaled from a tabul-
ated universal calibration.

il

6 was function inverted according to equation 3 which is the mathematical model of
The inverted eqguation was differentiated analytically and the

R(U)

A+ Y(U)U ;

0.775 + 0.025 (log U)Y

0.5 - 0.09 (log (U/10)3

resulting equations for g and dg/dU are as follows

g

dg

au
where

DR
and

DY

Both equation 7 and 8 were evaluated for a large set of values of U
m/sec. The values of m and X were adjusted to give less than 2% error in amplitude linear-
ity This decision rule was felt to be the most plausible one representing a "judgment" which
would be used by the operator of the lineariser.
The true differential evaluated in the same velocity range from equation 8 is shown on figure 4.

(A+YUR—X ) =

-

n(v0a-x) " L[ py+v.oR.1n0 + R/U ] OF

-0.27 [ log (u/10) 1% /U 1n(10)

-

0.1 [10gu]® /v nao) .

As can be seen the errors are quite significant.

-

-

(8)

(7)

(8)

in the range 3 to 30

A typical amplitude plot is shown on figure 3.

As a check of the overall performance of the simple inverter, the derivatives dg/dU were
evaluated for a whole range of values of m and X . A typical set of curves are shown on

figure 5, where the results have all been normalised at U = 30 m/sec.

4. EXPERIMENTAL LINEARISER PERFORMANCE

The DISA. 55-D-10 lineariser was tested experimentally using the constant temperature hot-

wire anemometer of Perry and Morrison (4) with a normal DISA miniature probe type 55F15. The
tungsten wire was replaced with a silver coated platinum wire (Wollaston wire) with a sensing

length of 1 mm and a diameter of 4 um.

The probe was mounted in a shaker capable of inducing

in the wire a precisely known velocity perturbation (5), and the output was processed on=-line

through an EAI type TR 48 analogue computer.

used.

Two kinds of output were observed.

(a) Static Calibration.

The lineariser was adjusted according to the Maker's specifications and the wire was
In performing this test it was observed that the linearised results

drifted significantly more than the unlinearised data due to changes in tunnel temperature. This
behaviour agrees with the prediction of Morrison (6), regarding the effects of temperature change
In order to overcome these effects the calibrating tunnel used in these
tests was fitted with a temperature controller capable of maintaining tunnell temperature at some
When using this controller there was negligible drift due to

calibrated statically.

on static calibrations.

preset value to within 0.1°C.

temperature changes.

(b) Dynamic Calibration.

Once reasonable static "linearity" was achieved the shaker was started and a dynamic

In all tests a fixed resistance ratio of 2.0 was
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calibration was carried out in accordance with the steps outlined in (5). For both types of cal-
ibration the output signal was integrated for 60 sec. to provide good repeatability. The consis-
tency of the results was better than %% . The linearised dynamic calibration was carried out for
a series of values of lineariser adjustment and the results are shown on figure 54.

As can be seen the shapes of the curves are similar to those predicted from the analytical
study. The values of m and X are different. This difference may be due to the non-universality
of the hot-wire performance equation proposed by (3) (equation 6) .

During these tests two types of uncertainties were observed in connection with the measured
differential of the inverted hot-wire output. Firstly the "wiggles" due to the approximations in
the inversion process. Secondly a change in position of these "wiggles" due to changes in test-
ing temperature from one day to the next. This second kind of uncertainty is illustrated on
figure 6.

5. COMMENTS AND CONCLUSIONS

There are significant errors involved when using function inversion to linearise experiment-
al data which is later differentiated. These errors cast serious doubts on the use of such in-
version processes. The existence of these errors has been demonstrated by the analytically pre-
dicted and real performance of the DISA 55-D-10 lineariser. In view of these errors the use of
function inversion should be discouraged.

As the function inversion process investigated here is an error amplifier two interesting
features of function inversion may bear investigation.

(a) Are function inverters generally error amplifiers?
(b) Can function inverters provide error attenuation?

Finally, the electronic lineariser should be used only in extreme cases, where high turbul-
ence level prohibits the use of any other measurement technique.
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