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SUMMARY

A performance prediction method for high subsonic inlet Mach number
conical diffusers, is developed which uses the entraimment principle

in the calculation of the compressible turbulent boundary layer.

A power law velocity profile is assumed together with Crocco's relation
for the temperature distribution. Following Green, Morkovin's Hypothesis
is invoked to extend to the compressible flow the existing relations for
the entrainment function. Comparison with available experimental
results shows good agreement.
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NOTATION.

e axial distance Vi distance normal to the wall

R diffuser radius at station x u, v axial and radial velocity at a point

U, M, velocity and Mach number in the free stream p,p T, P local pressure, density,

8 Boundary layer thickness 6* = temperature and total pressure

H boundary layer shape parameter = — § ,6 Dboundary layer displacement and

Ce local skin friction coefficient _ momentum thickness

° _ (5 B 5.)/(5. = ) Hl,H,(Hl)k,(H)k shape parameters defined in text
P 2 I i 1

¢, 52 = ﬁi/mean kinetic energy at u', v' fluctuating velocity components

diffuser inlet Y ratio of specific heats

SUBSCRIPTS.

e refers to the edge of the boundary layer

1.2 refer to diffuser inlet and outlet

a bar indicates mean values over diffuser cross-section
Other symbols are defined within the text

INTRODUCTION

A detailed survey of diffuser prediction methods revealed that only two procedures
were available for compressible flow. These were: Method of Cocanower, Kline and
Johnston (1) : The core flow was treated as compressible one-dimensional, but the boundary
layer was considered as incompressible. Only the conditions of conservation of mass and
momentum were satisfied; besides, the correlation for the shape parameter employed is known
to be inadequate.

Method of Ashcroft (2): The great strength of Ashcroft's method was its fully ellyptic
treatment of the compressible axisymmetric potential core flow. This was, however, combined by
iteration With an inadequate compressible boundary layer calculation based on a primitive
compressibility transformation.

In view of the shortcomings of these previous methods attempts were made to develop a
prediction method based on the latest developments in compressible turbulent boundary layer
prediction achieved over the last six years. After a detailed survey of such methods, it
was decided that integral methods which are extensions to compressible flow of low speed
techniques were most suitable for treatment of diffuser flows, and that at least initially
one-dimensional core flows might be appropriate in view of the lengthy calculations involved
in constructing performance maps. Finite difference methods were excluded on the following
basis :-

(1) They are very temperamental and slight changes in geometry or flow conditions can
sometimes result in the calculation becoming unstable.

(ii) None of them have been investigated under severe adverse pressure gradients, also
their performance near separation has not be studied, while more than one integral method
proved to be fairly accurate near the separation point.

(134) McDonald (12) noticed no significant gain in accuracy over the less rigorous and
much faster integral methods.

(iv) Their lengthy computer programming and execution time make their use uneconomical for
the construction of performance maps.

Two methods were developed, the first was based on the entrainment principle while the
second employed the kinetic energy deficit equation as an auxiliary boundary layer equation.
The suitability of the entrainment method for solving the diffuser problem was disputed by
Carmichael and Pustintsev (3), yet Nicoll and Ramparian (4) showed that good results can be
obtained provided that realistic assumptions about the velocity profile were made and accurate
correlations were used.

The entrainment method will be discussed in this paper. Comparison of the predictions
with some of the available experimental results showed good agreement.

BASIC ASSUMPTIONS.

A. Core flow :- A steady, one-dimensional isentropic core is assumed to extend till diffuser
exit(boundary layers do not merge.)

B Boundary layers :-1.Adiabatic, i.e. heat transfer to or from the diffuser is neglected.
2.Thin at inlet to diffuser. )
3.Flow attached (or very slightly separated).
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4. Boundary layers are growing under ordindry rates of strain (no shock waves
or expansion fans).

5. Demnsity fluctuations are neglected.

6. Diffuser walls are smooth and impermeable (no mass transfer).

7. Boundary layer is anisoenergetic, i.e., stagnation temperature is allowed to
change within the boundary layer.

8. Axisymmetric ()

C. Flow generally :-°1. Fluid is a perfect gas and the recovery factor is constant.
2. Static pressure is a function of axial distance only.

FORMULATION OF THE DIFFUSER PROBLEM.
Boundary Layer Momentum Integral Equation.

The basic equation is the axially symmetric momentum integral equation which is
compressible flow, takes the form :

dx 5 U2 dx

e

The turbulence anisotropy term in equation (1), which accounts for the Reynclds normal stress

is usually neglected in boundary layer calculations. Because of the large fluctuations usually
associated with separated flow, it is very likely that this term should be included. However, in
the present analysis, considering flows in unstalled diffusers, or diffusers with limited amount

of stall, this term will be neglected.

. C 5 S
de : _ . 2,d(nU) |, d@oR) | _ £ 1 d 2 2
= & e [(2 + H Me ) F: = = =gt . (pv pu ) dy (1)

For an external flow ( i known), equation (1) contains 3 unknowns, ©, H and C.. To solve
for the boundary layer an aux1§iary pelation between H and 6 and an expression for C_ in terms
of H and 6 are needed. The entrainment equation is the required first relation, whi{e for C. a
modified version of the Ludwig and Tillman correlation was employed. This takes the form

_ Te -1.561 H 5 -0.268
Cf = 0.246 T e Re
where R, = == um = viscosity at temperature Tm
8
p ( u

; — (1-=)

Tm _ 2 = o pe U

Te - 1+ 1.44 p Me and H = 5

Diffuser Overall Continuity Equation
In internal flows, the streamwise pressure distribution and consequently %g-are determined

not only by the frictionless flow external to the boundary layer but also by the development of
the boundary layer itself. An additional relation should be provided for dU in terms of the

boundary layer integral parameters, which in this case, considering the on%xdimensional core in
the conical diffuser, becomes

® .2
Pe U (R - § ) = Constant

or in differential form N
R - HO _ 2, d(1nU) dR _ ., de _ o dH _
5 (L M) ot t xR Hoa= 64 =0 (3)

Entrainment equation

Head's (13) basic argument was that the distribution of mean velocity in the boundary
layer and in particular, the velocity defect in its outer part (measured roughly by shape
parameters such as H and H,) should control the entrainment process and he further suggested
that the density variation in the outer part of a compressible boundary layer should have little
effect on the entrainment mechanism. Green (5) took up this suggestion by assuming that the
entrainment F

§
_ 1 d
F = 50 T oJ pudy (4)

and the kinematic shape parameter (H,;)
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)
§
_ u u _u
(k) _OJ 2 gy AI T a-tHy (5)

satisfy the empirical relation obtained by Head for incompressible flow which could be fitted
with the equation - 0.653

F = 0.0306 I:(Hl)k - 3.01 (6)

For an axisymmetric flow with a thin boundary layer, equation (4) becomes

$
_ 1 d
F = FUR iR OI pudy } s
b
Now using the definition of the mass flow thickness A = OI BE% dy =6 - 8 (47)
e

equation ®') may be written as

% (070K} = b DER d(1npe) 2 d(1nv)
which on expansion and substitution of = T Me = and A = Hle becomes
L SN [}iﬁiﬂﬁl by =ty e (7)
dx: dx 1 dx e dx

Now, with the empirical relation for the entrainment (equation 6) provided, a relation between
the shape parameters H. and H is needed to achieve closure.

In the early approach of Green (5) complementary shape parameter relations were obtained in an
indirect and fairly lengthy way through relations between H and Hl and their kinematic equiva-
lents (H)k and (Hl) These relations were as follows :-

"
B seeribl o5 (8)
l+.1:£ » M 2
2 e
H o= 5,8+ —203 (9)
1 g1y _p = - 2
rMe” (H+ 1) (H-1)
5 - e =
(B, = B|1+ : HGEL) FH ) (10)
1 4 DMe {!_ H(H + 1) i
° (38 -1) (28-1)
(#,), = 3.4 + 1.87 /((H), - 0.5)%°8 (11)
1k ‘ * k ‘
In the present analysis the solution is to be advanced for the unknownsH and © hence, the term
dH g
—— in equation (7) has to be related to %g . This relation was obtained as
dH
1 dH d(1nU)
=== & Zl = + Z2 = where
= -7/3
B o= e el 2, ==0.4rZ. M 2 ( 1+ 0.2M4 %) (H+1) (12)
1 2 Z 1l e e
1+ 0.2r Me
COMPUTATIONAL EQUATIONS AND SOLUTION PROCEDURE.
Rewriting equations (1), (3) and (7) in a non-dimensional form using the definitionsﬁ =-§— 5
g L [o]
_ X ~ R 1 _ 4o ' _dH ' _dR ¢ - d(1nU)
X = ﬁ; s R = ﬁ; s @ = E? s H = Eﬁ s R = Ei and U' = ax

then eliminating U' from equations (3) and (7) using equation (1) the system reduces to 2,
simultaneous differential equations in the unknowns H and ©

aH +bo'=c¢c (13)
e H' +f0' =g (18)

where
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- Cf Rr
a=0% b=H -A ¢=F~R—== 1 <AV B F
- % Cx
e =9 f=H+B g=R (1-B¥ )+ B =

2 o . gl
i B, ¥ H, GrH0) o (R - H) (@ -H)
g H = M2 59 (2 +H-M2)
e e

The solution is obtained by simultaneous step-by-step integration of equations (13) and (14)
starting from prescribed inlet conditions using a fourth order Runge-Kutta scheme. At the end
of each step, new values of H and @ are obtained. To proceed with the integration the local
value of the Mach No. has to be calculated in order to evaluate local properties of the free
stream and the various empirical functions. This is obtained by using the overall continuity
equation in its integral form, which can be reduced to

M

(R - HG)2 . < = (Const.

The value of the constant is evaluated at the diffuser inlet, then at the end of each step,
values of H and © are caleulated which upon substitution in the above equation yield a value

for the function M

M) = 2
< @ + 0.2 M:)3

This equation was solved numerically using the Bisection method.

Remarks on Computer Programme.

For the predictions to be accurate, the calculations must be terminated before the class A
restrictions are violated, i.e., before the boundary layers merge and before the flow
separates. or

A - Boundary Layers Merging :

The programme was made to stop when € = o where
E = R-8=R- (8% +A)=R-96 (H+ Hl)
B - Flow Separation :

More than one flow detachment criteria were employed to predict the point of first
appreciable stall, e.g.,

H= 3.1 Suggested by Moses and Chappel (6)
%& = 0.012 Suggested by Reneau and Johnston (7)
B* = 0.0u48 Suggested by Cocanower et al(l)
x (- 187 (2580
where B#% = =
2 HOR

However, the calculations were continued beyond the separation point to assess the
capability of the analytical method to predict slightly separated diffuser.

COMPARISON WITH EXPERIMENTAL RESULTS.

Though a large amount of experimental data is available in the literature for the case of
incompressible diffuser flow, only nine reports with compressible conical diffuser flow data
are known to the authors. The diffusers have cone angles varying from 4° to 31° with inlet
Mach numgers from 0.2 up to choking, the inlet Reynolds number varying from 2 x 10° to
Tab & 1075

In some cases the authors did not report the position of the inlet measuring station.
Consequently, in order for the inlet losses to be accounted to the diffuser, the inlet station
is taken to be one diameter upstream of the sharp transition between the entry pipe and
diffuser cone.

In the following, predictions of diffuser performance are compared with some of the
available experimental data.
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In Fig. (1), comparison between prediction of the growth of boundary layer parameters (6 and H)
and experimental results of Little and Wilbur (8) are shown. As was observed with incompressible
diffuser flow prediction methods, e.g. Carmichael and Pastinsev's (3) methods, the theory tends
to underestimate the momentum thickness growth while the' shape factor is overestimated, the
deviations increasing for the thicker inlet boundary layer and/or the larger diffuser angle.

From the comparison between predictions of the present method and those of Cocanower et al
with experimental data of Johnston (9) (in table 1) and Copp (10) (in Fig. (2)) it is obvious
that the technique employed in this work leads to improved predictions, compared with these
previous methods. It can be also concluded that, though predictions of the growth of boundary
layer parameters may not be very accurate, yet predictions of overall quantities (e.g., pressure
recovery) are sufficiently accurate, which justifies using this method for predicting diffuser
performance characteristics.

In Fig. (3) theoretical predictions are compared with data of Scherrer and Anderson (an)
for conical diffusers whose geometry was very slightly shaped to suit near sonic inlet velocities.
From Fig. (2) and (3) it is noticed that though the predictions are accurate up to
yet the theory does not predict the experimentally observed rapid deterioration of performance
as choking is approached. This is attributed to the one dimensional treatment of the potential
core flow which is a limitation especially in the inlet zone, where strong streamline
curvature exists. Work is continuing to overcome this limitation.

No experimental data is available on the separation point in high subsonic Mach number
diffusers and consequently incompressible flow data were employed to assess the accuracy of
the theoretical predictions of the point of boundary layer separation. Cocanower's correlation
seems to be the best detachment criterion available, though the theory always predicts a
premature (early) separation.
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TABLE 1. COMPARISON OF PREDICTED PRESSURE RECOVERY VALUES WITH JOHNSTON'S EXPERIMENTAL DATA.

E AR B. R Me‘ Cp

Ri = € ! Measured | Cocanower's Present Method
15.25 i 0.0075 3 X7 xlOb 0.3 0.874 0.840 0.8599
15525 L 0.0075 6.34 x 10 0.6 0.854 0.845 0.852

15,25 L 0.0075 8.97 x 10 0.85 0.840 0.838 0.838

N - Diffuser axial length Bi - Diffuser inlet blockage
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