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SUMMARY

A disk rotating in an infinite quiescent fluid is one of the simplest types of
three-dimensional boundary-layer flow. Depending on the Reynolds number based on
radius and angular velocity, we may have laminar, transitional, and turbulent boundary
layers. According to experimenté% the flow is laminar if the Reynolds number is less
than approximately 1.85 x 10°. The flow is transitional for Reynolds number between
1-85 x 102 and 2.85 x 10°. It is fully turbulent for Reynolds number greater than
2.85 % 102,

In this paper we discuss the prediction of laminar, transitional and turbulent
boundary layers on a rotating disk by an efficient numerical method. The method
employs the eddy viscosity concept to model the Reynolds shear stress terms and has
been previously used to compute two-dimensional boundary layers 2)ang recently
three-dimensional boundary la.,'ye:r‘s(a"+ . Results are given for values of the rotational
Reynolds number from zero to 2 x 108,

*¥Adjunct Professor, Mechanical Engineering Dept., California State University,

Long Beach, California, U.S.A.
#%¥Professor, Mechanical Engineering Dept., Purdue University, Lafayette, Indiana, U.S5.A.



562

Nomenclature

A damping-length constant

Cfy circumferential local skin-friction coefficient

f radial stream function

g circumferential stream function

r radial coordinate (radius from axis of rotation)

R, rotational Reynolds number, wr2/v

Re Reynolds number based on momentum thickness, 6ur/v
U, V,W mean radial, axial, and circumferential velocity components, respectively
vy axlal coordinate = distance perpendicular to the disk
Vi intermittency factor

€ eddy viscosity

et dimensionless eddy viscosity, e/v

n similarity parameter

0 momentum thickness, 6 = j? w/wr (1 - w/ur)dy

i dynamic viscosity °

v kinematic viscosity = u/p

o) density

T shear stress

w angular velocity of disk

Subscripts

i inner region
o) outer region
W wall

primes denote differentiation with respect to 7



Basic Equations

The boundary-layer equations for steady incompressible three-dimensional, axi-symetric flow
near the rotating disk in the absence of a radial pressure gradient are:

Continuity
1 v
= —_— + —_— =
r or (ur) oy 0 (1)
Momentum in the radial direction
Ju du w2 _ 13 U =y
st _— —= = — — - pu
Momentum in the circumferential direction
W ow uw 1. oW et
— =gk e £ o == DA
H e + v 5y " ar e (u 3y P ) (3)
These equations are subject to the boundary conditions:
y = 0 u = 0 w = wr (h&)
y > @ u = 0 w = 0 (4)

Before we solve the above system, we first transform it by using the similarity variable

n = (%)}éy (5a)
and the dimensionless stream function f(r,n) defined by
W) = (w)? r2 £(r,n) (5b)
Here

With the concept of eddy viscosity, the Reynolds shear stress terms in (2) and (3) can be written
as

R Ju - oW
= It = e - Iyt = ]
pu'v pe 5y ° pv'w pe 3y (6)
With (5) and (6), the system (1)-(3) can be written as
Momentum equation in the radial direction
3 T
[(1 + e*ye"]" « 228" - (£')2 + (g')% = r(f' %f— = g %f) (7)
Momentum equation in the circumferential direction
+ A
[(1+ ¢ )g"]' + 2fg" - 2f'g! = I'G” %%- - g" %5) (8)
Here primes denote differentiation with respect to n and
- u W
e = elv, Ft B 5 gl 25 5 BT (9)
T r
The boundary condition (4) become
m = 0 . £' = 0 g' = 1 (10a)

n =+ o f' = 0 g' = 0 - (lOb)
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Eddy-Viscosity Formulation

At the present there are several mixing-length and eddy~viscosity formulations being used o
model the Reynolds shear-stress terms in the boundary-layer equations. Here we shall use the one
developed by Cebeci and Smith(2) This formulation accounts for various boundary-layer effects
such as high and low Reynolds numbers, transitional flows, mass transfer, etc. and has shown to
give good results(2) It has also been extended to three-dimensional boundary layers, again
producing good results @G>4), The extension of this formulation to a rotating disk is presented
below.

Due to the composite nature of a turbulent boundary layer, we divide the layer into inner and
outer regions and define corresponding eddy viscosity formulas by separate expressions in each
region. In the inner region of the boundary layer we define the inner eddy-viscosity by

-\2]%
gi = L2 (g_;l)i + (g—;_r) (ll)
Here
L = «yll - exp(-y/a)] (12a)
W = WX - W (12b)

In (12a) «k is von Karman's constant equal to 0.40 and A dis a damping-length parameter given by

1.
2

+ Tw
A = Awv (5—-) (12¢)
with AT = 26,

In the outer region of the boundary layer we define the outer eddy-viscosity by

€, = @ f[wx - (u? + ‘-—12)1/2} dy (13)
0

Here o is a "universal" constant equal to 0.0168.

To account for the effect of low Reynolds number and to account for the transitional region
between a laminar and turbulent boundary, we modify the expressions given by (11) to (13). To
account for the low Reynolds number effect, we use the expressions given by Cebeci and Mosinskis(s)
and by Cebeci ‘6! According to ref. (5), k and A  are functions of Reynolds number given by

B o= B E ———dd (1ka)
1+ 0.19 zg
and
A" = 26+ il (1%b)
1 =k zé
where 2y = Ry X 1073 > 0.3. According to ref. (6), o is a function of Reynolds number given by
- (1.55)
o =.0.0168 T+ (15a)
where
i
I =0.55 [1 - exp(-0.2L3 zf - 0.298 zl)] (15b)

and z, = (Ra/hES — 2 i
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As previously discussed, the flow is fully turbulent when the rotational Reynolds number
is greater than 2.85 x 10%; for the range of 1.85 x 10° and 2.85 x 10%, the flow is transitional.
The eddy-viscosity formulation given by (11) through (15) is based on experimental data obtained
for fully turbulent flows. For this reason, the formulation should not be used to compute transi-~
tional boundary layers unles§ it is corrected for the intermittent behavior of the boundary layer
in the transitional region(7. In the eddy-viscosity methods the "correction" is usually made by
multiplying the inner and outer eddy-viscosity formulas by an intermittency factor. Several
authors have tried this approach and have obtained satisfactory agreement with experiment.
According to the expression used by Cebeci(a, the intermittency factor for an incompressible

turbulent boundary layer with zero pressure gradient is given by

)2] (16a)

Yo = 1 - exp[-G(x - 2.
where
ug -1.3h X
= et O B e
¢ = 0.835 x 10 g Ry, . , R, = (16b)
By interpreting R, as a rotational Reynolds number, R, = wrzfv, and taking u, = wr, we may
write (16) as
= — — _ 2
Ypp = 1 = expl-6ly - 7, )21 , (17a)
and
R \2 )
G = 0.835 x 1073 (—5) Rr_l'3 {17Db)
T tr

In transformed coordinates, it can be shown that the inner and outer eddy viscosity formulas
can be written as

: %
e:.: = (kn)2 er/a[l - exp (—RI,_%E n i-)] [(f")z + (g")z} Ve e: < E; (18a)
ez = GR? 1{’ {l - [(2')% + (1 - g')zl%}dn Vi {16b)

Here
+.
T ~3/s AZ 27% (19)
1] " L
R/H[(£7)2 + (8))2]

+ . i .
and k, A , a, and Yy are given by (1la), (14b), (15), and (17), respectively. Equations (18)
are then the eddy viscgsity formulation used in the present paper.

Comparison with Experiment

We heve used the numerical method of H. B. Keller(9) described in ref. (3) to solve the
system given by (7), (8), (10), (18). After writing the basic equations (7) and (8) as a first-
order system the derivatives are approximated by centered difference quotients and averages
centered at the midpoints of net rectangles or net segments. Arbitrary (nenuniform) meshes are
used and second-order accuracy is retained. The nonlinear difference equations are solved by
Newton's method using an efficient block-tridiagonal factorization technique. For details see
Refs. (2), (3) and (9).

Figures 1 to 3 show the results obtained by our method. Figure 1 shows the mean radial and
circumferential velocity profiles for a turbulent flow. The calculations were started as laminar
at r = 0, and were continued as laminar until R, = 1.85 x 10°. At that location the turbulent
flow calculations were started by activating the eddy-viscosity formulas in the solution of the
governing equations.

Figure 2 shows the comparison of calculated and experimental circumferential skin-friction
coefficient, cp, defined by =
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2.9 ay

2 3w
ory - B (2] (20
pwer W

which in terms of transformed variables can be written as

1.
_322 n
erg = 7 (m ) &, (20b)

The agreement with measured velocity profiles and skin friction is very satisfactory.

Figure 3 shows a comparison of calculated and experimental turbulent mean radial and
cirecumferential velocity profiles. The data is due to Erian and Tongtll- SBhown in the plots are
the predictions of ref. (10), which was obtained by a different extension of the Cebeci-Smith
eddy-viscosity formulation (2) Again our results agree well with the experimental data.

In conclusion, the method presented here for predicting the three-dimensional boundary layer
that develops on a rotating disk is found to be in good agreement with the available experimental
data. The method accounts for complete flows, including laminar, transitional, and turbulent
regions. The method is capable of accurate predictions of detailed.yelocity profiles as well
as the conventional boundary-layer parameters.
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Fig. 2. Comparison of circumferential skin-friction component.



